
3202 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 5, MAY 2020

Spectral State Compression of Markov Processes
Anru Zhang and Mengdi Wang

Abstract— Model reduction of Markov processes is a basic
problem in modeling state-transition systems. Motivated by the
state aggregation approach rooted in control theory, we study
the statistical state compression of a discrete-state Markov chain
from empirical trajectories. Through the lens of spectral decom-
position, we study the rank and features of Markov processes,
as well as properties like representability, aggregability, and
lumpability. We develop spectral methods for estimating the
transition matrix of a low-rank Markov model, estimating the
leading subspace spanned by Markov features, and recovering
latent structures like state aggregation and lumpable partition
of the state space. We prove statistical upper bounds for the
estimation errors and nearly matching minimax lower bounds.
Numerical studies are performed on synthetic data and a dataset
of New York City taxi trips.

Index Terms— Computational complexity, maximum likelihood
estimation, minimax techniques, signal denoising, tensor SVD.

I. INTRODUCTION

MODEL reduction is a central problem in scientific
studies, system engineering, and data science. In many

situations one needs to learn about a complex system from
trajectories of noisy observations. When data is limited,
the unknown system becomes difficult to model, analyze, infer
and let alone optimize.
In this paper, we study the dimension reduction of a Markov

chain {X0, X1, . . . , Xn} where the state space is discrete and
finite but very large. There are two goals: The first goal is data
compression and recovery of a reduced-order Markov model.
The second goal is to extract features for state representation,
which can be further used to find state aggregation or lumpable
clusters. These two goals are closely tied to each other -
achieving either one would trivialize the other one. We refer
to the combination of these two goals as the problem of state
compression.
State compression of discrete Markov chains finds wide

applications. For an example of network analysis, records of
taxi trips can be viewed as a fragmented sample path realized
from a city-wide Markov chain [1], [2], and experiments sug-
gest that one can estimate latent traffic network from sample
paths [3]. Similar needs for analyzing Markov transition data
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also arise from ranking problems in e-commerce [4], [5],
where clickstreams can be viewed as a random walk on the
space of all possible clicks.
Our work is inspired by the state aggregation approach that

is commonly used to reduce the complexity of reinforcement
learning and control systems. State aggregation means to
aggregate “similar” states into a small number of “meta states,”
which are typically handpicked based on domain-specific
knowledge [6], [7] or based on given similarity metrics or fea-
ture functions [8]. In the context of discrete-state Markov
chains, the goal of state aggregation is to find a partition
mapping E such that P(Xt+1 | Xt ) ≈ P(Xt+1 | E(Xt )). In
fact, the state aggregation structure corresponds to a particular
low-rank decomposition of the system’s transition kernel (see
Proposition 3). Another inspiring example is the use of mem-
bership models for modeling large Markov decision processes,
where each observed state is mapped into a mixture over meta
states [7], [9]. This membership model, also known as soft
state aggregation, corresponds to a low-rank decomposition
structure of the transition kernel (see Proposition 2). These
existing approaches for dimension reduction of control and
reinforcement learning mainly rely on priorly known meta-
states or membership models. In contrast, we aim to learn
the state aggregation structure from trajectorial data in an
unsupervised manner.
Let us investigate the spectral decomposition of the Markov

chain, of the form

P(Xt+1 | Xt ) ≈
r∑

k=1

fk(Xt )gk(Xt+1),

where f1, . . . , fr , g1, . . . , gr are some feature functions and
r is the rank. The spectral decomposition of the transition
kernel provides a natural venue towards state compression,
where f1, . . . , fr , g1, . . . , gr can be used as basis functions
to represent the state space using a small set of parameters.
There are many open fundamental questions: How to estimate
the feature functions and the leading feature space? How to
estimate the Markov model under a low-rank assumption?
What are the statistical limits for state compression? In this
paper, we plan to take a substantial step towards answering
these questions.
We propose a class of spectral state compression methods

for finite-state nonreversible Markov process with provably
sharp statistical guarantees. Our main results are summarized
as follows.

1) Spectral properties of Markov chains, aggregability,
and lumpability. We study the spectral decomposi-
tion of Markov chains, and we show it is closely
related to aggregability and lumpability of the process.
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Aggregability means that the states can be aggregated
into blocks while preserving the transition probability
distributions, while lumpability means that states can be
clustered while preserving the strong Markov property.

2) Sharp statistical guarantees for estimating low-rank
Markov models. For Markov chains with a known small
rank, we provide a spectral method for estimating the
transition matrices and establish upper bounds on the
finite-sample total variation error. We also establish a
nearly matching minimax lower bound. These results
also extend to the estimation of general low-rank sto-
chastic matrices that are not necessarily square.

3) Sharp statistical guarantees for state space compression
of general Markov chains. For general Markov chains
that is not low-rank, we show that the spectral method
recovers the leading Markov feature space with high
accuracy. Upper bounds and minimax lower bounds for
the subspace recovery errors are established. In special
cases of aggregable or lumpable processes, we show that
one can further recover the state aggregation or lumpable
partition with statistical guarantees.

In numerical experiments, we apply state compression to
analyze the New York City Yellow Cab data. By modeling taxi
trips as sample transitions realized from a citywide random
walk, our spectral state aggregation method indeed reveals
latent traffic patterns and meaningful partition of NYC.

A. Outline

Section II surveys related literature. Section III studies the
spectral decomposition of the Markov chains and properties
such as the representability, aggregability and lumpability.
Section IV proposes a spectral method for estimating low-
rank Markov models and provides theoretical guarantees.
Section V proposes state compression methods for estimating
the leading feature space and recovery of the state aggregation
structure or lumpable partition. Section VI gives numerical
experiments. Proofs are given in the supplement.

B. Notations

We use lowercase letters such as x, y, z to denote scalars
and vectors, and use boldface uppercase letters like X, F, P to
represent matrices. For x, y ∈ R, we denote x∧y = max{x, y},
x ∨ y = min{x, y} and (x)+ = max{x, 0}. For a vector v ∈
R

p , we denote ‖u‖q = (∑p
i=1 |vi |q

)1/q
for all q > 0 and

‖u‖∞ = max1≤i≤p |ui |. For a matrix X ∈ Rp1×p2 , we denote
by σk(X) its k-th largest singular value, and denote ‖X‖F =(∑

i, j X2
i j

)1/2
, ‖X‖ = ‖X‖2 = sup‖u‖2≤1 ‖Xu‖2, and ‖X‖1 =∑

i, j |Xi j |. For two sequences {an}, {bn}, we say an 	 bn if
there exists c1 > c2 > 0 such that c2 bn ≤ an ≤ c1 bn for all
n sufficiently large.

II. RELATED LITERATURE

This work relates to a broad range of model reduction meth-
ods from dynamical systems, control theory, and reinforcement
learning. For instance in studies of fluid dynamics and mole-
cular dynamics, various spectral methods were developed for

approximating the transfer operators, their eigenvalues, eigen-
functions and eigenmodes, including time-lagged independent
component analysis (e.g., [10], [11]) and dynamic mode
decomposition (e.g. [12], [13]). See [14] for a review of data-
driven dimension reduction methods for dynamical systems. In
control theory and reinforcement learning, state aggregation is
a long known approach for reducing the complexity of the
state space and thus reducing computational costs for approx-
imating the optimal value function or policy; see e.g., [7]–[9],
[15], [16]. Beyond the state aggregation approach, a related
direction of research, known as representation learning, is to
construct basis functions for representing high-dimensional
value functions. Methods have been developed based on diag-
onalization or dilation of some Laplacian operator that is used
as a surrogate of the exact transition operator; see for examples
[17]–[20]. Reference [21] gave a comprehensive review of
representation learning for Markov decision problems and an
extension to continuous-state control problems. The afore-
mentioned methods typically require prior knowledge about
structures of the problem or transition function of the system,
lacking statistical guarantees.
Our methods and analyses developed in this paper use ideas

and proof techniques that can be traced back to discrete dis-
tribution estimation, matrix completion, principal component
analysis and spectral clustering. In what follows, we review
related results in these areas.
Our first main results are the minimax upper and lower

bounds for estimating low-rank Markov models (Section IV).
These results are related to the problem of discrete dis-
tribution estimation, which is a basic problem that has
been considered in both the classic and recent literature
[22]–[26]. These works established minimax-optimal estima-
tion results or various losses (e.g., total variation distance and
Kullback-Leibler divergence) and specific discrete distribu-
tions when the observations are generated independently from
the target distribution.
Another related topic is matrix completion, where the goal

is to recover a low-rank matrix from a limited number of
randomly observable entries. Various methods, such as nuclear
norm minimization [27], [28], projected gradient descent [29],
[30], singular value thresholding [31], [32], max norm min-
imization [33], [34], etc, were introduced and extensively
studied in the past decade. Similar to [31], [32], our pro-
posed estimators involve a singular value thresholding step.
In contrast to matrix completion, the input data considered
in this paper are transitions from a sample path of a random
walk - they never reveal any exact entry of the unseen tran-
sition matrix and the data are highly dependent. In addition,
the transition matrix to be estimated is known to be a stochastic
matrix, making the problem distinct from matrix completion.
Recovery of a low-rank probability transition matrix has

been considered by [35]–[37].1 Reference [35] studied a
spectral method for estimating hidden Markov models and
proved sample complexity for the Kullback-Leibler divergence
that depends on spectral properties of the model. A subroutine

1 [37] was completed after the initial arxiv version of the current paper was
released, therefore [37] is not a prior work.
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of the method conducts spectral decomposition of a multi-step
empirical transition matrix for identifying the hidden states.
Reference [36] recently studied the estimation of a rank-two
probabilistic matrix from observations of independent samples
and provided error upper bounds. Reference [37] studied a
rank-constrained likelihood estimator for Markov chains and
provide upper and lower bounds for the Kullback-Leibler
divergence. In comparison to these works, we focus on the
Markov processes, and we provide explicit upper bounds and
minimax lower bounds for the total variation distance and the
subspace angle.
Our results for spectral state aggregation and spectral

lumpable partition can be viewed as variants of spectral
clustering. Spectral clustering is a powerful tool in unsu-
pervised machine learning for analyzing high-dimensional
data [38], [39]. It is widely used in community detection
[40]–[42], high-dimensional feature clustering [43], [44],
imaging segmentation [45], [46], matrix completion [31], [47].
In most of these works, the input data are independent and
clusters are computed based on some similarity metric or sym-
metric covariance matrices. In comparison, the proposed
methods of spectral state aggregation and spectral lumpable
partition are not based on any similarity metric or sym-
metric matrix. The two methods are developed to exploit
linear algebraic structures that are particular to aggregata-
bility and lumpability, respectively. In particular, the spec-
tral state aggregation method aims to cluster states while
maximally preserving the outgoing distributions, while the
spectral lumpable partition method focuses on preserving the
strong Markov property of the random walk. More specifically,
state aggregation is based on the left Markov features, while
lumpable partition relates to both the left and right features. A
related work by [48] studied the lumpable network partition
problem by analyzing the eigen-structures when the network is
exactly given. Our spectral method for estimating the lumpable
partition is based on singular value decomposition rather than
eigendecomposition. Following this work, the paper [49] later
studied nonnegative factorization for estimating the soft state
aggregation model and the paper [50] developed a kernelized
state compression method for representation learning of mul-
tivariate time series data.

III. MARKOV RANK, AGGREGABILITY, AND LUMPABILITY

Let {X0, . . . , Xn} be a Markov chain on the space �. When
� is a finite set � = {1, . . . , p}, let the transition matrix be
P ∈ Rp×p where Pi j = P(Xk = j |Xk−1 = i, Xk−2, . . . , X0)
for all k ≥ 1, 1 ≤ i, j ≤ p. Throughout this paper, we assume
{X0, . . . , Xn} is ergodic so there exists an invariant distribution
π ∈ Rp , i.e., πi = limn→∞ 1

n

∑n
k=1 1{Xk=i}. Furthermore, π is

an invariant distribution if and only if π�P = π�, πi ≥ 0, and∑p
i=1 πi = 1. Let πmin = min1≤i≤p πi , πmax = max1≤i≤p πi .

Let F ∈ Rp×p be the long-run frequency matrix Fi j =
limn→∞ 1

n

∑n
i=1 1{Xk=i,Xk+1= j }, so that F = diag(π)P. For

any ε > 0, the ε-mixing time of the Markov chain is defined
as

τ (ε) = min

{
k : max

1≤i≤p

1

2

∥∥∥(Pk)[i,:] − π�
∥∥∥
1
≤ ε

}
. (1)

We call τ∗ = τ (1/4) the mixing time for short. Please refer
to [51], [52] for comprehensive discussions on the theory of
Markov chain and mixing times.
Let us consider Markov chains with a small rank. This

notion was introduced for Markov processes with a general
state space by [53] as an example of “dependence that is close
to independence”. For more examples and properties of the
finite-rank Markov chain, please refer to [54] and [55].

Definition 1 (Markov Rank, Kernel and Features). The rank
of a Markov chain X0, . . . , Xn is the smallest integer r such
that its transition kernel can be written in the form of

P(Xt+1 | Xt ) =
r∑

k=1

fk(Xt )gk(Xt+1), (2)

where f1, . . . , fr are real-valued functions and g1, . . . , gr are
probability mass functions. The non-degenerate r × r matrix
C such that Ci j = f �j gi is referred to as the Markov kernel.
We refer to f1, . . . , fr as left Markov features and g1, . . . , gr
as right Markov features. If the Markov process has p discrete
states, f1, . . . , fr , g1, . . . , gr are p-dimensional vectors and
Ci j = ∑p

k=1 f j (k)gi(k).

A low-rank Markov chain admits infinitely many decom-
positions of the form (2), therefore the kernel C and feature
functions f1, . . . , fr , g1, . . . , gr are not uniquely identifiable.
In this paper, we will mainly focus what are identifiable,
i.e., the transition kernel P and the feature spaces spanned
by f1, . . . , fr and g1, . . . , gr respectively.
Proposition 1 shows that Markov features are sufficient to

represent the multi-step Markov transition and the stationary
distribution.

Proposition 1 (Representability of Markov Features; [54]).
Suppose that the Markov chain X0, . . . , Xn has a rank r taking
the form of (2), then
1) If the state space is finite, the transition matrix P satisfies

rank(P) = r .
2) P(Xt+n | Xt ) = ∑r

i=1
∑r

j=1 fi (Xt )(Cn−1)i j g j (Xt+n).

3) There exists γ ∈ R
r such that π(·) = ∑r

k=1 γkgk(·) and
γ�C = γ�.

In addition, Markov features can be used as basis func-
tions in the context of control and reinforcement learning
for representing value functions. For example consider the
reward process h(X0), . . . , h(Xn), where h : � �→ R is a
reward functio. In control and reinforcement learning, a central
quantity for evaluating the current state of the system is the
discounted cumulative value function v : � �→ R, given by
v(x) = E

[∑∞
n=0 αn h(Xn) | X0 = x

]
, where α ∈ (0, 1) is a

discount factor. Now if the Markov chain admits a decompo-
sition of the form (2), we have v(·) = r(·)+∑r

k=1 wk fk(·) for
some scalars w1, . . . , wr . In other words, the value function
can be represented as a linear combination of left Markov
features.
Next we introduce a notion of Markov non-negative rank,

which is slightly more restrictive than the Markov rank.

Definition 2 (Markov Non-negative Rank). The non-negative
rank of a Markov chain is the smallest r such that its transition
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Fig. 1. Soft state aggregation of Markov chain with a small nonnegative rank.
Raw states can be mapped to “meta-states” through a factorization model of
the transition matrix.

kernel can be written in the form of

P(Xt+1 | Xt ) =
r∑

k=1

fk(Xt )gk(Xt+1)

for some nonnegative functions f1, . . . , fr , g1, . . . , gr .

This definition of nonnegative rank remains the same even
if we restrict g1, . . . , gr are probability mass functions and
for each x ∈ �, i �→ fi (x) is a probability mass function.
Denote by rank+(P) the nonnegative rank of P. It is easy to
verify that rank+(P) = r if and only if there exist nonnegative
matrices U, V ∈ R

p×r
+ and P̃ ∈ R

r×r+ such that P = UP̃V�,

where U1 = 1, V�1 = 1, P̃1 = 1. This decomposition means
that one can map the states into meta-states while preserving
most of the system dynamics (see Figure 1). In the context
of control and dynamic programming, rows of U are referred
to as aggregation distributions and columns of V are referred
to as disaggregation distributions (see [56] Secion 6.3.7). It
always holds that rank(P) ≤ rank+(P).

Low-rank decomposition of the Markov chain is related to
several reduced-order models. For example, the Markov chain
with a small nonnegative rank is equivalent to a membership
model.

Proposition 2 (Nonnegative Markov Rank and Membership
Model). The Markov chain with transition probability matrix
P has a nonnegative rank rank+(P) ≤ r if and only if there
exists a stochastic process {Zt } ⊂ {1, . . . , r} such that

P(Zt | Xt ) = P(Zt | X1, . . . , Xt ),

P(Xt+1 | Zt ) = P(Xt+1 | X1, . . . , Xt , Zt ). (3)

Next we consider an important special case of low-rank
Markov processes that is amenable to state aggregation. State
aggregation is a basic approach for describing complicated
systems [7], [56] and is particularly useful for approximating
value functions in optimization, control theory, and reinforce-
ment learning [57]. The idea is to partition the state space into
disjoint blocks and treat each block as a single new state.

Definition 3 (Aggregability of Markov Chains). A Markov
chain is r-state aggregatable if there exists a partition

�1, . . . , �r of � such that

P(Xt+1 | Xt = i) = P(Xt+1 | Xt = j)

for any i, j ∈ �k, k ∈ {1, . . . , r}.
It is easy to show that aggregability corresponds to a

particular non-negative decomposition.

Proposition 3 (Decomposition of Aggregatable Markov
Chains). If a Markov chain is state-aggregatable with respect
to a partition �1, . . . , �r , its nonnegative rank is at most r
and

P(Xt+1 | Xt ) =
r∑

k=1

1�k (Xt )gk(Xt+1)

for nonnegative functions g1, . . . , gr : � �→ R+, where 1S
denotes the indicator function of a set S.

Proposition 3 implies, the Markov chain with transition
matrix P is r -state aggregatable if and only if rank+(P) = r
and there exist U, V ∈ Rp×r such that P = UV�, where
V is nonnegative and U = [1�1, . . . , 1�r ] indicates the
membership.
A Markov process is called lumpable if the state space can

be partitioned into blocks while still preserving the strong
Markov property [58], [59].

Definition 4 (Lumpability of Markov Chains [58]). A Markov
process X1, . . . , Xn is lumpable with respect to a partition
�1, . . . , �r , if for any k, 	 ∈ {1, . . . , r}, x, x ′ ∈ �k ,

P(Xt+1 ∈ �	 | Xt = x) = P(Xt+1 ∈ �	 | Xt = x ′). (4)

If the Markov chain is lumpable, it has eigenvectors that are
block structured and equal to indicators functions of the sub-
sets [48]. However, a lumpable Markov chain is not necessarily
low-rank. There may exist other eigenvectors corresponding to
local dynamics within a subset. See Figure 2 for an example
of Markov chain that is lumpable but not exactly low-rank.
We show that the lumpable Markov chain has the following
decomposition.

Proposition 4 (Decomposition of Lumpable Markov Chains).
Let the Markov chain with transition matrix P ∈ Rp×p be
lumpable with respect to a partition �1 . . . , �r . Then there
exist P1, P2 such that P = P1 + P2 and P1P�

2 = 0, where P1
can be written as

P1 = Z · P̄ · diag(|�1|−1, . . . , |�r |−1) · Z�,

where Z = [1�1, . . . , 1�r ] ∈ Rp×r , P̄ ∈ Rr×r is the stochastic
matrix such that P̄kl = P(Xt+1 ∈ �l | Xt ∈ �k). Let the SVD
of P1 be P1 = UP1�P1V�

P1
. Then (UP1)[i,:] = (UP1)[i ′,:] and

(VP1)[i,:] = (VP1)[i ′,:] for any i, i ′ ∈ �k and k ∈ {1, . . . , r}.
Lumpability is a more general concept and it contains aggre-

gability as a special case. According to Prop. 3, aggregability
is closely related to blockwise structures of the left Markov
features, while according to Prop. 4, lumpability is related to
structures of the Markov features of P1 instead of the full
transition matrix.
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Fig. 2. Illustration of a lumpable Markov chain that is not exactly low-rank.
The lumpable partition corresponds to a block-structured transition matrix
after permutation. Here Pσ is the transition matrix after permutation and P̄
is the law of transition on the lumpable blocks.

Part of the results stated in Props. 1-4 are known in various
works cited above. For completeness, we provide their proofs
in Section VIII of the supplementary materials. In summary,
the spectral decomposition of Markov processes plays a central
role in many reduced-order models. Therefore the estimation
of low-rank Markov models provides a natural venue towards
state compression.

IV. MINIMAX ESTIMATION OF LOW-RANK

MARKOV MODELS

In this section we focus on the p-state Markov chain
{X0, . . . , Xn} which has a priorly known rank r . Under
the low-rank assumption, we aim to estimate the transition
probability matrix P based on a sample path of n empirical
state transitions. To this end, we propose a spectral estimation
method and analyze the total variance distance between the
estimator and the truth. A nearly matching minimax lower
bound is also provided.

A. A Spectral Method for Markov Chain Estimation

Consider a Markov chain with transition matrix P ∈ Rp×p

and frequency matrix F ∈ Rp×p . Suppose that rank(P) =
rank(F) = r and we are given a (n + 1)-long trajectory
{X0, . . . , Xn} starting at an arbitrary initial state. It is natural
to estimate P and F via the empirical frequency matrix and
empirical transition matrix, given by

F̃ =
(

F̃i j

)
1≤i, j≤p

, F̃i j = 1

n

n∑
k=1

1{Xk−1=i,Xk= j }; (5)

P̃ =
(

P̃i j

)
1≤i, j≤p

,

P̃i j =



∑n
k=1 1{Xk−1=i,Xk= j}∑n

k=1 1{Xk−1=i} , if
∑n

k=1 1{Xk−1=i} ≥ 1;
1
p , if

∑n
k=1 1{Xk−1=i} = 0.

(6)

Here, 1{·} is the indicator function and 1p is the p-dimensional
vector with all ones. Note that F̃, P̃ are in fact the maximum

Algorithm 1 Spectral Estimation of Low-Rank Markov Mod-
els
Input: X1, . . . , Xn , r

1) Construct F̃ and P̃ using (5)-(6).
2) Let the singular value decomposition (SVD) of F̃ be

F̃ = ŨF �̃F Ṽ�
F , where ŨF , ṼF are p-by-p orthogonal

matrices and �̃F is a p-by-p diagonal matrix.
3) Denoting (x)+ = max{x, 0}, let the frequency estimator

F̂ be

F̂ = (F̂0)+/‖(F̂0)+‖1,
where F̂0 = ŨF,[:,1:r]�̃F,[1:r,1:r](ṼF,[:,1:r])�. (7)

4) Let the transition matrix estimator P̂ ∈ R
p×p be

P̂[i,:] =
{

F̂[i,:]/
∑p

j=1 F̂i j , if
∑p

j=1 F̂i j > 0,
1
p1p, if

∑p
j=1 F̂i j = 0,

(8)

i = 1, . . . , p.

Output: P̂, F̂.

likelihood estimators and strongly consistent [60]. However,
they do not account for the knowledge of a small Markov rank.
Consider the special case of r = 1, where the Markov chain
reduces to a sequence of i.i.d. random variables. Knowledge of
r = 1 reduces the matrix estimation problem into estimation
of a p-state discrete distribution. In contrast, the empirical
estimators essentially look for a p2-state distributions and will
incur larger estimation errors.
We propose the following spectral method for estimating

low-rank Markov chains.
Note that F̂, P̂ are not necessarily low-rank, due to the

nonnegativity-preserving step (·)+ in (7). However, Algo-
rithm 1 still enables data compression, because F̂, P̂ can be
easily constructed based on the low-rank matrix F̂0. As an
alternative to F̂, we can also apply the algorithm by [61] to
project F̂0 onto the probability simplex to obtain an estimation
of F, and obtain

F̂1 = argmin
F̂1

‖F̂1 − F̂0‖2F subject to F̂1
i j ≥ 0,

∑
i j

F̂1
i j = 1.

The proposed estimators F̂, P̂ are related to the hard singular
value thresholding estimators (HSVT), which were previously
studied in matrix denoising [62], [63] and matrix comple-
tion [32]. Our method and its subsequent analysis differ from
that of HSVT in two aspects. First, our estimation problem
requires P,F to be stochastic matrices that belong to particular
simplexes (see Lemma 1 in the supplement). This is achieved
by normalizing rows of the matrices and truncating negative
values, which complicates the analysis of the estimation errors.
Second, the analysis needs to account for the Markov depen-
dency of the data, while the data are typically independent in
matrix denoising and matrix completion.
Algorithm 1 requires r be selected in advance, which is

needed by many other spectral-based methods. In practice, this
value can be chosen empirically, for example one can (1) draw
a scree plot for the SVD of F̃, i.e., the cumulative ratio of total
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variance as explained by the leading principal components,
then select r as the location of the “elbow” in the scree
plot; (2) evaluate the smallest r such that the first r principal
components explain a certain level of total variation criterion,
and (3) test by cross-validation. The readers are referred to [64]
for a comprehensive discussion for rank selection.

B. Total Variation Upper Bound

Our first main result establishes the total variation distance
upper bound between the proposed estimator and the truth.

Theorem 1 (Upper Bound). Suppose {X0, . . . , Xn} is gener-
ated by an ergodic Markov chain with transition probability
matrix P ∈ Rp×p, invariant distribution π ∈ Rp, and
mixing time τ∗. Let F̂, P̂ be the estimators given by (7)-(8).
If rank(P) = r , we have

E‖F̂ − F‖1 ≤
√
Crp

n
· πmax p · τ∗ log2(n) ∧ 2, (9)

E‖F̂1 − F‖1 ≤
√
Crp

n
· πmax p · τ∗ log2(n) ∧ 2,

E
1

p

p∑
i=1

‖P̂[i,:] − P[i,:]‖1 ≤
√
Cr

n
· πmax

π2
min

· τ∗ log2(n) ∧ 2.

(10)

Let r̃ = ‖F‖2F/σ 2
r (F), κ = p2 maxi j Fi j . Then

E max
1≤i≤p

‖P̂[i,:] − P[i,:]‖1 ≤
√
Cr̃

n
· κ3

pπ2
min

· τ∗ log2(n) ∧ 2,

(11)

where σr (F) is the r-th singular value of F, C is a universal
constant.

The proof of (9) and (1) relies on novel matrix Markov
chain concentration inequalities with mixing time (Lemma 7),
which characterizes the 2-norm distance between F̃ and F.
Then based on the low-rank assumption of F and P, a careful
spectral analysis (Lemma 3) is performed to obtain the average
error bound for F̂ and P̂. The proof of (11) is more involved.
By using similar arguments, we can prove that F̂1 also achieves
the 	2 risk upper bound in (9). Particularly, we derived concen-
tration inequalities for projected Markov chains (Lemma 8),
performed a more careful algebraic analysis, and obtained the
uniform upper bound of total deviation for P̂. In what follows
we make a few technical remarks.

Remark 1 (Spectral estimators P̂, F̂ vs. Empirical estimators
P̃, F̃). Theorem 1 shows that E‖F̂ − F‖1 	 E

1
p ‖P̂ − P‖1 	√

pr/n, assuming all other parameters are fixed. In compari-
son, we can show that E‖F̃ − F‖1 	 E

1
p ‖P̃ − P‖1 	

√
p2/n,

based on minimax error bounds for discrete distribution esti-
mation [25], [26]. Therefore the spectral estimators are much
more efficient because they utilize the low-rank structure.
Numerical comparisons between the spectral and empirical
estimators are given in Section VI.

Remark 2 (Dependence on the stationary distribution). The
error bounds of Theorem 1 rely on πmax and πmin, and they

take smaller values if π does not deviate much from the
uniform distribution. When πmin is small, one has to pay a
higher price for those states appearing the least frequently
in the sample path. The dependence on πmax is due to a
technical argument used in the proof to establish spectral norm
concentration inequalities for asymmetric matrices (Lemma 7),
which may be improvable under additional assumptions like
reversibility.

Remark 3 (Dependence on the mixing time). The error
bounds of F̂, P̂ involve a key quantity of Markov mixing
time τ∗, whose actual value could be difficult to evaluate
in practice [65]. We further show that similar error bounds
like those in Theorem 1 hold if the mixing time is replaced
with some eigengap. Please see Section IX-B Corollary for
a generalization of Theorem 1 using an eigengap condition.
Further improvement of the error bounds will require novel
Markov concentration inequalities that have been developed
in recent literature (see [66], [67]).

Remark 4 (About the row-wise uniform bounds). We intro-
duce the entry-wise upper bound condition of κ for establish-
ing the row-wise uniform upper bound (11). The dependence
on κ suggests that estimating “overly-spiky” matrices is typi-
cally more difficult. Similar conditions were also used in the
literature of low-rank matrix estimation (e.g. [27], [28]).

C. Minimax Lower Bound for Estimating Low-Rank Markov
Chains

Now we investigate the information-theoretic limits of
recovering low-rank Markov models. Consider the following
class of low-rank transition matrices

Pp,r =
{
P ∈ Pp, rank(P) ≤ r

}
, (12)

where Pp is the class of all p-by-p transition matrices (see
its definition in Eq. (54) in the supplementary material).
Furthermore, we consider a more restricted class of low-
rank Markov models with bounded mixing time and uniform
ergodic distributions, given by

P∗
p,r =

{
P ∈ Pp,r : τ∗ = 1, πmax = πmin = 1/p

}
. (13)

We provide error lower bounds for recovering transition matri-
ces within the aforementioned classes from finite trajectories.

Theorem 2 (Lower Bound). Suppose we observe (n + 1)
consecutive transition states {X0, . . . , Xn}, where the starting
point X0 is randomly generated from the invariant distribution.
Then

inf
P̂

sup
P∈Pp,r

E
1

p

p∑
i=1

∥∥∥P̂[i,:] − P[i,:]
∥∥∥
1

≥ inf
P̂

sup
P∈P∗

p,r

E
1

p

p∑
i=1

∥∥∥P̂[i,:] − P[i,:]
∥∥∥
1
≥ c

(√
rp

n
∧ 1

)
,

inf
F̂

sup
F=diag(π)P;

P∈Pp,r

E

p∑
i=1

∥∥∥F̂[i,:] − F[i,:]
∥∥∥
1
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≥ inf
F̂

sup
F=diag(π)P;

P∈P∗
p,r

E

p∑
i=1

∥∥∥F̂[i,:] − F[i,:]
∥∥∥
1
≥ c

(√
rp

n
∧ 1

)
,

where c > 0 is a universal constant, inf F̂ and infP̂ are taken
infimum over arbitrary estimators P̂ and F̂, respectively.

The proof is by constructing a series of instances of low-
rank Markov chains with uniform stationary distributions and
constant mixing times. We show that these instances are not
distinguishable based on (n + 1) sample transitions, by using
the generalized Fano’s lemma. See Section IX-C for the full
proof.
Let us compare Theorems 1 and 2. The error upper bounds

achieved by the spectral estimators F̂, P̂ are nearly minimax-
optimal in their dependence on r, p, n (up to polylogarithmic
terms), as long as parameters of the ergodic distribution
πmax/πmin and the mixing time τ∗ are bounded by constants.
This suggests that our spectral estimators are statistically
efficient for fast mixing Markov processes as long as the
ergodic distribution is balanced. It is not yet known whether
the dependence on πmax/πmin and τ∗ is optimal.

D. Extension to Rectangular Probability Matrix

The proposed spectral method can be extended to esti-
mating a broader class of probability matrices - not limited
to transition matrices of Markov chains. An example of
such an estimation problem arises from policy imitation in
reinforcement learning, where one observes a sequence of
state-action pairs generated by an expert policy that is applied
in a Markov decision process. In this case, the expert policy
can be represented using a transition probability matrix where
each entry assigns the probability of choosing an action at a
given state. The policy matrix is typically low-rank, as long
as the Markov decision process admits state aggregation
structures or can be represented using membership models.
Specifically, suppose we are given a stochastic process

{(X0,Y0), (X1,Y1), . . . , (Xn,Yn)}. We assume that
{X0, X1, . . . , Xn} is an ergodic Markov process on p
states with invariant distribution π and Markov mixing time
τ∗. We are interested in estimating the transition matrix
Q ∈ R

p×q such that

Qi j = P(Yk = j | Xk = i),

for all k, i, j. Analogous to Section IV-A, we propose a
spectral estimator for Q assuming that it has a priorly known
rank r .

Theorem 3. Let {(X0,Y0), (X1,Y1), . . . , (Xn,Yn)} be a sto-
chastic process as described previously, r = rank(Q). Let
π, τ∗ be the stationary distribution and mixing time of
{X0, . . . , Xn} respectively. Let G = diag(π)Q and κ =
pq maxi j Gi j . Then

E
1

p

p∑
i=1

‖Q̂[i,:] − Q[i,:]‖1

≤C
√

(p ∨ q)r

n
· κ

(pπmin)2
· τ∗ log2(n) ∧ 2. (15)

Algorithm 2 Spectral Estimation of Rectangular Probability
Matrix
Input: {(X0,Y0), (X1,Y1), . . . , (Xn,Yn)}, r .
1) Let G̃ be the empirical estimate of the frequency matrix

G = diag(π)Q such that

G̃ ∈ R
p×q , G̃i j = 1

n

n∑
k=1

1{(Xk,Yk )=(i, j )}.

2) Calculate the SVD G̃ = ŨG�̃GṼ�
G and let Ĝ0 =

ŨG,[:,1:r]�̃G,[1:r,1:r]Ṽ�
G,[:,1:r].

3) Let the frequency estimator Ĝ be

Ĝ = (Ĝ0)+/‖(Ĝ0)+‖1,
where Ĝ0 = ŨG,[:,1:r]�̃G,[1:r,1:r](ṼG,[:,1:r])�. (14)

4) Let the estimator Q̂ ∈ R
p×q be

Q̂[i,:] =
{

Ĝ[i,:]/
∑q

j=1 Ĝi j , if
∑q

j=1 Ĝi j > 0;
1
q , if

∑q
j=1 Ĝi j = 0.

Output: Q̂, Ĝ.

Let r̃ = ‖G‖2F/σ 2
r (G). Then,

E max
1≤i≤p

‖Q̂[i,:] − Q[i,:]‖1

≤C

√
(p ∨ q)r̃

n
· κ3

(pπmin)2
· τ∗ log2(n) ∧ 2. (16)

Note that estimating a square probability matrix is a special
case of estimating rectangular matrices. So our lower bound
result given by Theorem 2 is also relevant in the setting of
general transition matrices. It suggests that the total variation
bounds given in Theorem 3 are sharp in their dependence on
p, r and n, provided that other parameters are bounded by
constant factors.

V. SPECTRAL STATE COMPRESSION OF NEARLY

LOW-RANK MARKOV CHAINS

In this section we consider general Markov processes with
full rank. Our aim is to recover the principal subspace asso-
ciated with P that is spanned by the leading Markov features.
We also provide two state clustering methods that are able to
partition the state space into disjoint blocks in accordance with
the aggregability or lumpability.

A. Estimating the Leading Markov Feature Subspace

As noted in Section III, spectral decomposition of Markov
chains provides feature functions that can be used to represent
operators and functions on the state space. The Markov
features also correspond to the block-partition membership
when aggregability holds. Now we aim to estimate the space
spanned by leading Markov features.
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Let the singular value decomposition of P and F be

P = [UP UP⊥]
[
�P1 0
0 �P2

]
·
[

V�
P

V�
P⊥

]
,

F = [UF UF⊥]
[
�F1 0
0 �F2

]
·
[

V�
F

V�
F⊥

]
, (17)

where UP , VP , UF , VF ∈ Op,r , UP⊥, VP⊥, UF⊥, VF⊥ ∈
Op,p−r , �P1,�P2,�F1,�F2 are diagonal matrices with non-
increasing order of diagonal entries. It is noteworthy that VP

and VF represent the same subspace when P or F is of exactly
rank-r , since F = diag(π) ·P. We use the following estimators
for the leading singular vectors of F and P,

ÛF =SVDr

(
F̃
)
= leading r left singular vectors of F̃;

V̂F =SVDr

(
F̃�) = leading r right singular vectors of F̃;

ÛP =SVDr

(
P̃
)
= leading r left singular vectors of P̃;

V̂P =SVDr

(
P̃�) = leading r right singular vectors of P̃,

(18)

where F̃ and P̃ are given by (5) and (6), respectively. By using
matrix norm concentration inequalities for F̃, π̃ and singular
value perturbation analysis, we prove the following angular
error bounds for the subspace estimators.

Theorem 4 (Feature Space Recovery Bounds). Let the
assumptions of Theorem 1 hold, let n ≥ Cτ∗ p log2(n). Then
the estimators ÛF , V̂F , ÛP , V̂P given by (18) satisfy

E

(
‖ sin�(ÛF , UF )‖ ∨ ‖ sin�(V̂F , VF )‖

)
≤C

√
1/n · πmax · τ∗ log2(n)

σr (F) − σr+1(F)
∧ 1, (19)

E

(
‖ sin�(ÛP , UP )‖ ∨ ‖ sin�(V̂P , VP )‖

)

≤
C‖P‖

√
1/n · πmax/π

2
min · τ∗ log2(n)

σr (P) − σr+1(P)
∧ 1, (20)

where C is a universal constant.

In parallel, we study the theoretical error lower bounds for
estimating the leading Markov feature spaces. Let the class of
approximately low-rank stochastic matrices be

Fp,r,δ =
{
F ∈ Fp : σr (F) − σr+1(F) ≥ δ

}
,

F∗
p,r,δ =

{
F ∈ Fp,r,δ : τ∗ = 1, πmax = πmin = 1/p

}
,

Pp,r,δ =
{
P ∈ Pp : (σr (P)− σr+1(P))/‖P‖ ≥ δ

}
,

P∗
p,r,δ =

{
P ∈ Pp,r,δ : τ∗ = 1, πmax = πmin = 1/p

}
.

Here, Pp and Fp represent the p-by-p transition and fre-
quency matrix classes respectively, whose rigorous definitions
are given in (54) and (55) in the supplementary materials.

Theorem 5 (Lower Bound for estimating the leading sub-
space). Suppose that 2 ≤ r ≤ p/2, δ ≤ 1/(4p

√
2) and

Algorithm 3 Spectral State Aggregation
Input: X1, . . . , Xn , r

1) Construct the empirical frequency matrix F̃ using (5).

2) Estimate the left Markov features ÛP using (18).
3) Solve the optimization problem

�̂1, . . . , �̂r =argmin
�̂1,...,�̂r

min
v̄1,...,v̄r∈Rr

r∑
s=1

∑
i∈�̂s

‖(ÛP )[i,:]−v̄s‖22.

Output: Blocks �̂1, . . . , �̂r

δ′ ≤ 1/(4
√
2). Then for sufficiently large p we have

inf
ÛF ,V̂F

sup
F∈F∗

p,r,δ

E

(
‖ sin�(ÛF , UF )‖ ∧ ‖ sin�(V̂F , VF )‖

)

≥ c

(√
1/(np)

δ
∧ 1

)
,

inf
ÛP ,V̂P

sup
P∈P∗

p,r,δ′
E

(
‖ sin�(ÛP , UP )‖ ∧ ‖ sin�(V̂P , VP)‖

)

≥ c

(√
p/n

δ′
∧ 1

)
,

where ÛP , V̂P , ÛF , V̂F are arbitrary estimators, c is a uni-
versal constant. The same relations also hold for Fp,r,δ and
Pp,r,δ .

The proofs of Theorems 4, 5 traced back to the analysis
of classic PCA in multivariate analysis [68]. Our method is
similar to PCA in the sense that they are both based on
the factorization of some matrix that is estimated from data.
It differs from PCA and aims to exact the Markov features
that capture the mean transition kernel of dependent data.

B. Spectral State Compression for Aggregable Markov Chain

Next we develop an unsupervised state compression method
based on the state aggregation model. According to Defin-
ition 3, a Markov chain is aggregable if the states can be
partitioned into a few groups such that the states from the
same group possess the identical transition distribution. In this
case, P is low-rank and the leading left singular subspace of
UP exhibits piecewise constant structure in accordance with
the group partition (Prop. 3). To estimate the group partition
from empirical transitions, we propose the following method.
In Step 2, the optimization problem is a combinatorial one.
In practice, we can use discrete optimization solvers like
k-means to find an approximate solution.
We evaluate the state aggregation method using the follow-

ing misclassification rate

M(�̂1, . . . , �̂r ) = min
ρ

r∑
j=1

|{i : i ∈ � j , but i /∈ �̂ρ( j )}|
|� j | ,

(21)

where ρ is any permutation among the r group. We prove
the following misclassification rate upper bound. The proof is
given in the supplementary materials.
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Theorem 6 (Misclassification Rate of Spectral State Aggre-
gation). Suppose the assumptions in Theorem 1 hold and
the Markov chain is aggregable with respect to groups
{�1, . . . , �r }. Assume n ≥ Cτ∗ p log2(n). The estimated
partition �̂1, . . . , �̂r given by Alg. 3 satisfies

EM(�̂1, . . . , �̂r )≤ C‖P‖2 pr · τ∗ log2(n) · πmax/(π
2
min p)

nσ 2
r (P)

∧ r.

We remark that the state aggregation structure can only be
uncovered from the left Markov features. As suggested by
Prop. 3, the left Markov features of a state-aggregable Markov
process exhibit a block structure that corresponds to the latent
partition. The right features do not carry such information.
The proposed method of spectral state aggregation can

be viewed as a special variant of clustering. It provides
an unsupervised approach to identify partition/patterns from
random walk data. Similar to many known clustering methods,
spectral state aggregation is based on spectral decomposition
of some kernel matrix, and it is related to latent-variable
models. Yet there is a critical distinction. While standard
clustering methods are typically based on some similarity
metric, spectral state aggregation is based on the notion of
preserving the state-to-state transition dynamics of the time
series. One may view that spectral state clustering yields
a partition mapping E from the state space into a smaller
alphabet such that P(Xt+1 | Xt ) ≈ P(Xt+1 | E(Xt )). It can
be interpreted as a form of state compression while preserving
the predictability of the state variables.

C. Spectral State Compression for Lumpable Markov Chain

Finally we develop the state compression method for
lumpable Markov process. Recall the discussion in Section III,
the Markov chain is lumpable with respect to partition
�1, . . . , �r ⊆ {1, . . . , p}, if the original p states can be
compressed into r groups, where the law of walkers on
{�1, . . . , �r } remains a Markov chain. Our goal is to identify
the partition according to lumpability. Recall from Proposi-
tion 4 and additional discussions in its proof (see Section VIII),
the transition matrix P and frequency matrix F do not have to
be low-rank. Instead, they admit the decompositions of the
form P = P1 + P2 and F = F1 + F2, where P1 and F1
are rank-r , and UP1, VP1 and VF1 have piece-wise constant
columns that correspond to the block partition structure. Thus
we propose the following spectral method for recovering the
lumpable partition.
We remark that the spectral lumpable partition method

is based on analyzing the right Markov features, i.e., the
matrix of leading singular vectors V̂F1 . This is because that
empirically we find that the right Markov features can be
typically estimated more accurately.

Theorem 7 (Misclassification Rate of Spectral Lumpable
Partition). Under the setting of Theorem 1, assume the Markov
process is lumpable with respect to �1, . . . , �r , and n ≥
Cτ∗ p log2(n). Suppose the partitions �̂1, . . . , �̂r are obtained

Algorithm 4 Spectral Lumpable Partition
Input: X1, . . . , Xn , r .
1. Evaluate the leading r right singular vectors for the empir-
ical frequency matrix F̃,

V̂F = SVDr

(
F̃�) ,

where F̃ =
(

F̃i j

)
1≤i, j≤p

, F̃i j = 1

n

n∑
k=1

1{Xk−1=i,Xk= j }.

2. Solve the optimization problem

�̂1, . . . , �̂r = argmin
�̂1,...,�̂r

min
v̄1,...,v̄r∈Rr

r∑
s=1

∑
i∈�̂s

‖(V̂F )[i,:] − v̄s‖22.

(22)

Output: Block partition �̂1, . . . , �̂r

by (22). Then

EM(�̂1, . . . , �̂r )

≤Cπmaxrτ∗ log2(n)/n + (r‖F2‖2) ∧ ‖F2‖2F
σ 2
r (F1)

∧ r.

Note that if the singular vectors of F1 are not the leading
ones for the full matrix R, it means σr (F1) ≤ ‖F2‖, and
the error bound above becomes large. Therefore one can only
recover the lumpable partition accurately if the random walk
on the groups correspond to leading dynamics of the process.

VI. NUMERICAL STUDIES

A. Simulation Analysis

We simulate random walk trajectories to test the state
compression procedures against naive empirical estimators.
Let P0 = U0V�

0 , where U0 and V0 are two p × r matrices
with i.i.d. standard normal entries in absolute values. Then we
normalize each row to obtain a rank-r stochastic matrix P,
i.e., P[i,:] = (P0)[i,:]/

∑p
j=1(P0)i j . Let p = 200, r = 3, n =

round(kpr log2(p)), where k is a tuning integer. For each
parameter setting, we conduct experiment for 100 independent
trials and plot the mean estimation errors in Figure 3. We
also conduct the experiments where both n, p vary. The
results are plotted in Figure 4, where we let r = 3, n =
round(kpr log2(p)), p ∈ [100, 1000] and k ∈ [2, 12].
Figures 3-4 suggests that the spectral estimators F̂, P̂ sig-
nificantly outperform the empirical estimators F̃, P̃ in all
parameter settings. They also show that the subspaces spanned
by leading Markov features can be estimated efficiently.
We observe that V̂P tends to have smaller estimation error
than ÛP , although they enjoy the same error bounds (The-
orems 4 and 5). This is because the theoretical results are
mainly focused the errors’ dependence on p, r, n. It remains
open how do the estimation errors of ‖ sin�(V̂P , UP )‖ and
‖ sin�(ÛP , UP )‖ depend on the stationary distribution π . Our
observations suggest that ÛP is more sensitive to the stationary
distribution, especially when πmin is small.
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Fig. 3. Spectral estimators obtained by state compression based on sample paths of length n = round(kpr log2(p)). Plots (a) and (b) suggest that the spectral
low-rank estimators are substantially more accurate than the empirical estimators, validating the bounds given by Theorem 1. Plots (c) and (d) suggest that
one can estimate the principal subspace spanned by the leading Markov features efficiently, validating the bounds given by Theorem 4. In particular, ÛP is
noisier than the other three subspace estimators because it is the most sensitive to states that are rarely visited, validating the error bound (20).

Next, we investigate the scenario that the invariant distri-
bution π is “imbalanced”, in the sense that πmin is small
and some states appear much less frequently than the others.
We generate the randomwalk data as follows. Let P0 = U0V�

0 ,
where U0, V0 are generated similarly as the previous settings.
Then we randomly generate I as a subset of {1, . . . , p} with
cardinality (p/2) and rescale transition probabilities from I c

to I by 1/δ. In this way, those states in I are visited less
frequently in the long run when δ gets larger, corresponding
to decreasing values of πmin . The numerical results in Figure 5
show that the estimation errors of F̂ stays roughly steady as
δ varies. However the estimation errors of P̂ increases as the
invariant distribution becomes more imbalanced. The reason
is that those rows of P̂ corresponding to infrequent states in
I become harder to estimate. This does not affect F̂ much,
because the corresponding rows have smaller absolute values
so they play a smaller role in the overall 	1 error.

Lastly we test the spectral lumpable partition method for
recovering the latent partition of a lumpable and full-rank
Markov process. Let P = P1 + P2 and let P1 = ZP̄Z�. Here,
Z ∈ Rp×r is a randomly generated membership matrix where
each row has one entry equality 1 and all other entries equaling
0s; P̄ is a randomly generated stochastic matrix given by

(P̄)[i,:] = (Ir+B)[i,:]/‖(Ir+B)[i,:]‖1, where B
iid∼ Unif[0, 1/2].

Let P2 be randomly generated as a low-rank matrix in a way
to ensure the lumpability of the overall Markov chain. It can
be verified that the Markov chain with transition matrix P
generated from above is lumpable with respect to a partition
of r groups. For various values of r, p, k, we test the spectral
lumpable partition method (Algorithm 4) on sample paths of
length n = round(kpr log2(n)). For each parameter setting,
we repeat the experiment for 1000 independent trials and
compute the averaged misclassification rates. The results are
plotted in Figure 6, and they are consistent with the theoretical
results in Section V-C.

B. Analysis of Manhattan Taxi Trips

We apply the state compression method to study the
New York City Yellow Cab data.2 The dataset contains 1.1×
107 taxi trip records from 2016. Each record contains the
information of one trip, including coordinates of pick-up/drop-
off locations, starting/ending times of the trip, distance, length
of trip, payment type and itemized fares. We view each trip as
a transition from the pickup location to the dropoff location,
so that the data is a collection of fragmented sample paths of a

2Data source: https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_
2016-01.csv
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Fig. 4. Total variation errors of the estimators F̂, P̂ with growing dimension p and sample size n. Here n = round(kpr log2(p)) and k is a tuning integer.
The spectral estimators F̂, P̂ consistently outperform the empirical estimators F̃, P̃ in all parameter settings.

Fig. 5. Average estimation losses of F̂, F̃ and P̂, P̃ for Markov processes with imbalanced invariant distribution. Here larger values of δ indicates more severe
imbalance in the invariant distribution (e.g., smaller values of πmin ).

city-wide Markov process. For more analysis on such taxi-trip
data, see for examples [1], [2].
We apply state compression to analyze the NYC taxi-trip

dynamics. The first step is to preprocess the data by discretiz-
ing the map of Manhattan into a fine grid and treat each taxi
trip as a single transition between the two cells that contain the
pick-up and drop-off locations respectively. We remove those
states (aka cells) with less than 200 total visits in a year (i.e.,
total number of pick-ups anddrop-offs), yielding approximate
5000 states. Then we compute the empirical transition matrix

P̃ from the taxi trips. See Figure 7 for the singular values
of P̃.
In order to estimate the left Markov features and the

citywide state aggregation structure, we apply the spectral state
aggregation methods given by Eq. (18) and Alg. 3. Figure 8
plots the top four estimated Markov features, in comparison
with the empirical frequency of visits. Figure 9 plots the
citywide partition identified using Algorithm 3 with various
values of r . In the case where r = 5, we obtain five
clusters as shown in the first panel of Figure 9. The five
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Fig. 6. Misclassification rate for recovery the lumpable partition. The input data are sample paths of length n = round(kpr log2(n)), where k is a tuning
parameter.

Fig. 7. Singular values of the empirical transition matrix P̃ from the NYC
taxi data.

clusters roughly correspond to: (1) Upper west side: residential
areas (red); (2) Upper east side: residential areas (yellow);
(3) Middleton: central business area (blue); (4) Lower west
Manhattan (pink); (5) lower east Manhattan (green). When r
is further increased to 9 and 12, the state aggregation method
uncovers a finer citywide partition according to transition
patterns of the taxi trips. For comparison, we implement the
k-means clustering method directly on rows of F̃ and P̃ and
plot the results in Figure 9 (b), which yield less interpretable
results.
It is worth noting that our state compression method

does not use any information about the geospatial proximity
between locations. The partition is obtained to maximally
preserve the transition dynamics of taxi trips. The experiment
reveals an informative partition of the Manhattan city, which
suggest that passengers who depart from the same zone share
similar distributions of their destinations.
Finally we analyze the taxi trips by taking into consideration

the time of the trips. We consider three time segments:
morning 6:00-11:59am, afternoon 12:00-17:59pm and evening
18:00-23:59pm. We stratify the data according to these seg-
ments and apply the state compression methods to analyze
trips within each segment separately. The results are presented
in Figure 10. Indeed, the traffic pattern varies throughout the
day. In particular, the morning-time state aggregation result
differs significantly from the partition structure learned from
trips in the afternoons and evenings.

VII. SUMMARY

Markov process is the most basic stochastic systems. There-
fore we believe that state compression of the Markov process is
naturally the first topic to investigate before moving on to more
complicated problems. In this article, we studied the spectral
decomposition of Markov processes and its connections to
latent-variable process, aggregability and lumpability. We pro-
posed a class of spectral state compression methods for analyz-
ing Markov state trajectories, and established minimax upper
and lower bounds for the estimation errors. For special cases
where the Markov process is state-aggregatable or lumpable,
we show that one can recover the underlying partition structure
with theoretical guarantees. The numerical studies on both
synthetic and real datasets illustrate the merits of the proposed
methods. We hope that establishing the spectral state com-
pression theory for Markov process would shed light on the
estimation and system identification of higher-order processes
that are not necessarily Markovian.

VIII. PROOFS FOR PROPERTIES OF LOW-RANK

MARKOV CHAINS

A. Proof of Proposition 1

Let F, G ∈ Rp×r , F[:,k] = fk , G[:,k] = gk, 1 ≤ k ≤ r .
By definition, C = G�F is non-degenerate. This implies F
and G are both non-singular, and rank(P) = rank(FG�) = r .
Next,

Pn =
n︷ ︸︸ ︷

FG�FG� · · ·FG� = F(G�F)n−1G� = FCn−1G�.

If π is the invariant distribution, π satisfies π�P = π�. Let
γ = F�π . Then, γ satisfies

Gγ = GF�π = P�π = π, ⇒ π(x) =
r∑

k=1

γkgk(x),

γ�CG� = π�FCG� = π�P2 = π�P = π�FG� = γ�G�.

Since G� is non-singular, the previous equality implies
γ�C = γ�. �
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Fig. 8. The leading Markov features yielded by spectral state compression reveal transition patterns across the city of Manhattan. Comparing (a) and (b),
the transition patterns appearing in the leading Markov features cannot be learned from the empirical stationary distribution.

Fig. 9. Spectral state aggregation applied to NYC taxi trips finds a citywide partition. In (a), each colored zone corresponds to an area from which taxi
passengers share similar distributions over their destinations. In (b), clustering the row distributions does not yield a meaningful partition.

B. Proof of Proposition 2

If there exists a latent process {Zt } ⊂ [r ] that satisfies (3),
we have

Pi j =P (Xt+1 = j | Xt = i)

=
r∑

l=1

P (Xt+1 = j | Xt = i, Zt = l)P (Zt = l | Xt = i)

=
r∑

l=1

P (Xt+1 = j | Zt = l)P (Zt = l | Xt = i)

:=
r∑

l=1

fl (i)gl( j),

where f1, . . . , fr and g1, . . . , gr are set as

fl(i) = P (Zt = l | Xt = i) , gl( j) = P (Xt+1 = j | Zt = l)

for any i, j, 1 ≤ l ≤ r . Then both fi and gi are non-negative
and gi is a probability mass function∑

j

gl( j) =
∑
j

P (Xt+1 = j | Zt = l) = 1.

On the other hand, if the Markov process has non-negative
rank r , based on Definition 2, we have

P(Xt+1 = j | Xt = i) =
r∑

l=1

fl (i)gl( j).

We introduce another process Zt ⊂ [r ] based on X0, X1, . . .
as follows: for k = 1, . . . , r ,

P (Zt = k | Xt+1 = j, Xt = i) = fk(i)gk( j)∑r
l=1 fl(i)gl( j)

.

Based on the Markovian property of {Xt } and the definition
of Zt , we have

P (Zt | Xt ) = P (Zt | X1, . . . , Xt )

since Zt only relies on Xt and Xt+1.

P (Xt+1 = j | Zt = k, Xt = i)

= P (Zt = k | Xt+1 = j, Xt = i) · P (Xt+1 = j | Xt = i)∑
j ′ P (Zt = k | Xt+1 = j ′, Xt = i)P (Xt+1 = j ′ | Xt = i)

=
fk(i)gk( j )∑r
l=1 fl (i)gl ( j )

·∑r
l=1 fl(i)gl( j)∑

j ′
(

fk(i)gk ( j ′)∑r
l=1 fl (i)gl ( j ′) ·

∑r
l=1 fl (i)gl( j ′)

)
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Fig. 10. Per-time-segment results from applying spectral state compression to NYC taxi-trip data: mornings (upper row), afternoons (middle row) and
evenings (lower row). One can see the leading Markov features vary throughout the day. The day-time state aggregation results differ significantly from that
of the evening time.

= fk(i)gk( j)(∑
j ′ fk(i)gk( j

′)
)

= fk(i)gk( j)

fk(i)
= gk( j).

Here, we used the fact that gl is a probability mass func-
tion so that

∑
j ′ gl( j

′) = 1. Based on the previous cal-
culation, we can see P (Xt+1 = j | Zt = l, Xt = i) is free
of i , which means P (Xt+1 | Zt ) = P (Xt+1 | Zt , Xt ) =
P (Xt+1 | Zt , X0, . . . , Xt ) . �

C. Proof of Proposition 3

We construct G = [g1, . . . , gr ] ∈ Rp×r as

∀1 ≤ j ≤ p, 1 ≤ k ≤ r,

if i ∈ �k, G j k = gk( j) = P (Xt+1 = j | Xt = i) .

Then, G is non-negative and well-defined since P is state-
aggretagable. Next, for any states 1 ≤ i, j ≤ p, if i ∈ �k ,
we have

Pi j =P(Xt+1 = j | Xt = i) = G j k

=
r∑

l=1

1�l (i)G j l =
r∑

l=1

1�l (i)gl( j).

�
D. Proof of Proposition 4

Let P̄ ∈ R
r×r , P1 ∈ Rp×p and P2 ∈ Rp×p be constructed

as follows

P̄kl =
∑
b∈�l

Pib ∀i ∈ �k; ∀k, l ∈ [r ]

P1 = ZP̄diag(|�1|−1, . . . , |�r |−1)Z�, P2 = P − P1,
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where Z = [1�1, . . . , 1�r ] ∈ Rp×r . Here P̄ is well-defined
because of the lumpability, it is transition matrix of the random
walk on the blocks �1, . . . , �r .

For any k, l ∈ [r ], i ∈ �k , we have

1�i P21�l = 1�i (P − P1)1�l

=
∑
j∈�l

Pi j −
∑
j∈�l

P1,i j =
∑
j∈�l

Pi j −
∑
i∈�l

1

|�l |
∑
b∈�l

Pib = 0.

Since i, l can be arbitrary, we have P21�l = 0 therefore P2Z =
0. It follows that P1P�

2 = 0.
Finally, let P1 = UP1�P1V�

P1
be the economic-size SVD.

Then for any k = 1, . . . , r , i, i ′ ∈ �k , i.e., i, i ′ belonging to
the same block, by definition of P1 and Z,

(P1)[i,:] =Z[i,:]P̄diag(|�1|−1, . . . , |�r |−1)Z�

=Z[i ′,:]P̄diag(|�1|−1, . . . , |�r |−1)Z� = (P1)[i ′,:].

Then,

(UP1)[i,:] = (P1)[i,:]VP1�
−1
P1

= (P1)[i ′,:]VP1�
−1
P1

= (UP1)[i ′,:].

By the same argument, we can also show (VP1)[i,:] =
(VP1)[i ′,:].
In fact, the frequency matrix F also has the similar decom-

position since F = diag(π)P,

F = F1 + F2, where F1 = diag(π)P1, F2 = diag(π)P2.

For this decomposition, we also have

F1F�
2 = diag(π)F1F�

2 diag(π) = 0.

Although F1 is not necessarily symmetric and the columns of
F1 may not have piece-wise constant structure, the rows of F1
is still piece-wise constant according to partition, i.e., F1,i j =
F1,i j ′ if j, j ′ belong to the same group. By the similar argu-
ment as the one for P1, we can show the right singular vectors
VF1 is also piece-wise constant, i.e., (VF1)[i,:] = (VF1)[i ′,:] if
i, i ′ belong to the same group.

IX. PROOFS FOR RESULTS OF SECTION IV

A. Proof of Theorem 1

(a) First we prove (9). Since F̂, F ≥ 0 and
∑

i, j F̂i j =∑
i, j Fi j = 1, the trivial bound

‖F̂ − F‖1 ≤ 2 (23)

holds, we only need focus on the case with additional
assumption that

n ≥ Cpr · (πmax p) · τ∗ log2(n). (24)

Given the previous assumption, Lemma 7 implies that
there exists constants C > 0 and c > 1 such that

P (A) ≥ 1− n−c,A =
{
max

{∥∥∥F̃ − F
∥∥∥ , ‖π̃ − π‖∞

}

≤ C

√
πmaxτ∗ log2(n)

n

}
. (25)

Assume that the probabilistic eventA holds. Recall F̂0 is
the leading r principal components of F̃ (Algorithm 1),
Lemma 3 implies

∥∥∥F̂0 − F
∥∥∥
F
≤ 2

√
2r

∥∥∥F̃ − F
∥∥∥ ≤ C

√
rπmaxτ∗ log2(n)

n
.

Since F̂ = (F0)+/‖(F0)+‖1 ≥ 0 and ‖F‖1 = 1, we have∥∥∥F̂ − F
∥∥∥
1
=
∥∥∥∥∥ (F̂0)+
‖(F̂0)+‖1

− F
‖F‖1

∥∥∥∥∥
1

Lemma 2≤ 2‖(F̂0)+ − F‖1
=2

p∑
i=1

p∑
j=1

|(F̂0,i j )+ − Fi j | ≤ 2
p∑

i=1

p∑
j=1

|F̂0,i j − Fi j |

≤2p


 p∑

i=1

p∑
j=1

|F̂0,i j − Fi j |2

1/2

= 2p
∥∥∥F̂0 − F

∥∥∥
F

≤Cp

√
rπmaxτ∗ log2(n)

n

=C

√
rp

n
· pπmax · τ∗ log2(n). (26)

with probability at least 1 − n−c, because of (25).
We finally have

E

∥∥∥F̂ − F
∥∥∥
1
=E

[∥∥∥F̂ − F
∥∥∥
1
1A

]
+ E

[∥∥∥F̂ − F
∥∥∥
1
1Ac

]
(26)(23)≤ C

√
rp

n
· pπmax · τ∗ log2(n) + 2 · P (Ac)

≤C
√
rp

n
· pπmax · τ∗ log2(n) + 2n−c.

(27)

When c > 1, we obtain the error bound for F̂.
In addition, if the probabilistic event A holds, we have

‖F̂1 − F‖F ≤ ‖F̂1 − F̂0‖F + ‖F̂0 − F‖F
(*)≤‖F − F̂0‖F + ‖F̂0 − F‖F ≤ C

√
rπmaxτ∗ log2(n)

n
.

Here, (*) is due to the definition of F̂1 and the fact
F belongs to the probability simplex. Applying the
previous argument again, we can show the same error
bound holds for F̂1.

(b) Next, we consider the average total variation error bound

for P̂. Since P̂[i,:] = F̂[i,:]
‖F̂[i,:]‖1 , P[i,:] = F[i,:]

‖F[i,:]‖1 , and

‖F[i,:]‖1 = πi ≥ πmin, we have

E

∥∥∥P̂ − P
∥∥∥
1
=

p∑
i=1

E‖P̂[i,:] − P[i,:]‖1

Lemma 2≤
p∑

i=1

E
2‖F̂[i,:] − F[i,:]‖1

πmin

≤C
√
r

n
· πmax

π2
min

· τ∗ log2(n).
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(c) Then, we consider the uniform row-wise bound (11).
Recall F = UF�FV�

F , F̃ = ŨF �̃F Ṽ�
F , F̂0 =

ŨF,[:,1:r]�̃F,[1:r,1:r]Ṽ�
F,[:,1:r]. Without ambiguity, we sim-

ply note UF , VF , ŨF , ṼF , etc as U, V, Ũ, Ṽ, etc. Then

F = F�V, F̂0 = F̂0�Ṽ[:,1:r] , (28)

P̂[i,:] = (F̂0,[i,:])+/

p∑
j=1

(F̂0,[i, j ])+. (29)

Here, �V = VV� and �Ṽ[:,1:r] = Ṽ[:,1:r]Ṽ�[:,1:r] are
the projection matrices on to the column space of
V and Ṽ[:,1:r], respectively. Since the trivial bound
maxi ‖P̂[i,:] − P[i,:]‖1 ≤ 2 always hold, we can assume

n ≥ Cpr̃
κ3

(pπmin)2
· τ∗ log2(n) (30)

in the rest of the proof without loss of generality.
Let δ = √

p/r max j ‖V�e j‖2 be the incoherence con-
stant. We aim to develop a bound for δ. Since F =
U�V�, we have ‖F[:, j ]‖2 = ‖U�(V[ j,:])�‖2 for any
1 ≤ j ≤ p. On one hand,

‖F[:, j ]‖2 =
√√√√ p∑

i=1

F2
i j ≤

κ
√
p

p2
= κ

p3/2
;

on the other hand,

‖U�(V[ j,:])�‖2 = ‖�(V[ j,:])�‖2 ≥ σr (�)‖V[ j,:]‖2
=‖�‖F‖V[ j,:]‖2√

r̃
= ‖F‖F‖V[ j,:]‖2√

r̃
≥ ‖F‖1‖V[ j,:]‖2

p
√
r̃

=‖V[ j,:]‖2
p
√
r̃

,

which means

δ
√
r/p

p
√
r̃

≤ max j ‖V[ j,:]‖2
p
√
r̃

≤ κ

p3/2
, ⇒ r̃ ≥ δ2 r/κ2.

Additionally,

πi = (π�P)i =π�Pei =1�p diag(π)Pei =
p∑

j=1

Fi j ≤ κ/p

⇒ πmax ≤ κ/p.

Therefore, we can apply Lemma 8 and obtain

max
1≤i≤p

‖(F̃[i,:] − F[i,:])V‖2≤C

(
πmaxδ

2rτ∗ log2(n)

pn

)1/2

≤ C

(
κ3r̃τ∗ log2(n)

p2n

)1/2

(31)

with probability at least 1− n−c.
By Lemma 7,

‖F̃ − F‖ ≤ C

(
πmaxτ∗ log2(n)

n

)1/2

(32)

with probability at least 1 − n−c. Given (31) and (32)
hold, we have

‖F̂0,[i,:] − F[i,:]‖2
≤‖F̂0,[i,:]�V − F[i,:]‖2 + ‖F̂0,[i,:] − F̂0,[i,:]�V‖2
=‖(F̂0,[i,:] − F[i,:])�V‖2
+ ‖F̂0,[i,:](�Ṽ[:,1:r] − �V)‖2

≤‖(F̂0,[i,:] − F[i,:])V‖2
+
(
‖F̂0,[i,:]−F[i,:]‖2+‖F[i,:]‖2

)
·2‖ sin�(Ṽ[:,1:r], V)‖

≤‖(F̂0,[i,:] − F[i,:])V‖2
+
(
‖F̂0,[i,:] − F[i,:]‖2 + ‖F[i,:]‖2

) C‖F̃ − F‖
σr (F)

≤C
(
r̃κ3τ∗ log2(n)

np2

)1/2

+
C
(
‖F̂0,[i,:] − F[i,:]‖2 + ‖F[i,:]‖2

)
σr (F)

×
(

πmaxτ∗ log2(n)

n

)1/2

≤C
(
r̃κ3τ∗ log2(n)

np2

)1/2

+
C
(
‖F̂0,[i,:] − F[i,:]‖2 + ‖F[i,:]‖2

)
‖F‖F

×
(

πmaxr̃τ∗ log2(n)

n

)1/2

. (33)

Here, the second line is due to (28); the third line is due
to the property of sin� distance (see Lemma 1 in [44]);
the fourth line is due to V and Ṽ[:,1:r] are the leading
singular vectors of F and F̃ and Wedin’s perturbation
theorem; the fifth line is due to (31) and (32); the sixth
line is due to r̃ = ‖F‖2F/σ 2

r (F) by definition. Thus,

‖F̂0,[i,:] − F[i,:]‖2

≤
C
(
r̃κ3τ∗ log2(n)

np2

)1/2 + C‖F[i,:]‖2
‖F‖F

(
πmaxr̃τ∗ log2(n)

n

)1/2
(
1− C

‖F‖F
(

πmax r̃τ∗ log2(n)
n

)1/2)
+

.

(34)

In addition, by the Cauchy-Schwarz inequality,

‖F‖F =
( p∑
i, j=1

F2
i j

)1/2 ≥ 1

p

p∑
i, j=1

|Fi j | = 1

p
;

We also have

πmax ≤ κ/p,

‖F[i,:]‖2
‖F‖F ≤

√∑p
j=1 F2

i j

1/p
≤

√
(κ/p2)

∑p
j=1 Fi j

1/p
≤ √

κπmax.
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Thus, the denominator of (34) satisfies

1− C

‖F‖F
(

πmaxr̃τ∗ log2(n)

n

)1/2

≥1− C

(
κpr̃τ∗ log2(n)

n

)1/2

≥ 1

2

provided (30) holds with a large constant C > 0 on the
right hand side of (30). Combining these inequalities
with (34), one has for any 1 ≤ i ≤ p,

P

(
‖F̂0,[i,:] − F[i,:]‖2 ≤ C

(
r̃κ3τ∗ log2(n)

np2

)1/2)

≥ 1− Cn−c. (35)

Finally, by Lemma 2 and the definition of P̂,

‖P̂[i,:] − P[i,:]‖1 =
∥∥∥∥∥ (F̂0,[i,:])+
‖(F̂0,[i,:])+‖1

− F[i,:]
‖F[i,:]‖1

∥∥∥∥∥
1

≤2‖(F̂0,[i,:])+ − F[i,:]‖1
‖F[i,:]‖1 ≤ 2‖F̂[i,:] − F[i,:]‖1

πi

≤C
√
p‖F̂[i,:] − F[i,:]‖2

πi

for any 1 ≤ i ≤ p. By (35) and the previous inequality,
we have the following high-probability upper bound

P

(
max
1≤i≤p

‖P̂[i,:] − P[i,:]‖1

≤ C

(
pr̃

n

κ3

(pπmin)2
τ∗ log2(n)

)1/2 )
≥ 1− Cpn−c ≥ 1− Cn−c+1,

since n ≥ Cpr̃ κ3

(pπmin)2
· τ∗ log2(n). We can additionally

develop the expectation upper bound similarly as the
argument of (27). �

B. Eigen-gap Condition

Eigengap Condition: When P satisfies the detailed bal-
ance condition, i.e., πiPi j = π jP j i for any 1 ≤ i, j ≤
p, or equivalently F is symmetric, the corresponding Markov
process is referred to as being reversible. The reversibility is
an important and widely considered condition in stochastic
process literature. When the Markov process is reversible,
it is well-known that all eigenvalues of P must be real and
between −1 and 1; the largest eigenvalue of a reversible
Markov transition matrix is always 1 [52, Chapter 12]. Sup-
pose the second largest eigenvalue of P is λ2 < 1, then
1 − λ2 plays an important role in regulating the connectivity
of the Markov chain: the more close λ2 is to 1, the more
likely the Markov chain is congested. Moreover, the eigengap
of reversible Markov processes can be estimated from the
observable states via a plug-in estimator [65].
The following results hold as an extension of Theorem 1

based on eigengap assumption.

Corollary 1. Under the assumption of Theorem 1, if P
is reversible and with second largest eigenvalue λ2 < 1,

then (9), (1), and (11) hold if one replace τ∗ log2(n) by
log(n/πmin) log(n)/(1− λ2).

Proof of Corollary 1. If the Markov process is reversible and
1− λ2 is the eigengap (see Section IX-B), by Lemma 7, one
has

P

(
max{‖F̃ − F‖, ‖π̃ − π‖∞}

≥ C

√
πmax log(n/πmin) log(n)

n(1− λ2)

)
≤ n−c0 .

By replacing τ∗ log2(n) by log(n/πmin)/(1 − λ2), the proof
for Corollary 1 immediately follows from the arguments in
Theorem 1. �

C. Proof of Theorem 2

First, we study the Kullback-Leibler divergence between
two Markov processes with same the same state space
{1, . . . , p} but different transition matrices P and Q. Suppose
π is the invariant distribution of both P and Q, X (1) =
{x (1)

0 , . . . , x (1)
n } and X (2) = {x (2)

0 , . . . , x (2)
n } are two Markov

chains generated from P and Q, and x (1)
0 ∼ π , i.e. the

starting point of X (1) is from its invariant distribution. Then,
clearly x (1)

0 , . . . , x (1)
n identically satisfy the distribution of

π (though they are dependent). Recall the KL divergence
between two discrete random distributions p and q is defined
as DK L(p||q) = ∑

x p(x) log(p(x)/q(x)). Thus,

DK L

(
X (1)||X (2)

)
:=

∑
X∈[p]n+1

pX (1)(X) log

(
pX (1)(X)

pX (2)(X)

)

=
∑

i0,...,in
∈[p]n+1

P

(
X (1)=(i0, . . . , in)

)
log

(
P
(
X (1)=(i0, . . . , in)

)
P
(
X (2)=(i0, . . . , in)

)
)

=
∑

i0,...,in∈[p]n+1

πi0Pi0,i1 · · ·Pin−1,in log

(
πi0Pi0,i1 · · ·Pin−1,in

πi0Qi0,i1 · · ·Qin−1,in

)

=
∑

i0,...,in−1∈[p]n

∑
in∈[p]

πi0Pi0,i1 · · ·Pin−1,in{
log

(
πi0Pi0,i1 · · ·Pin−2,in−1

πi0Qi0,i1 · · ·Qin−2,in−1

)
+ log

(
Pin−1,in

Qin−1,in

)}
=DK L

(
{x (1)

0 , . . . , x (1)
n−1}||{x (2)

0 , . . . , x (2)
n−1}

)
+

∑
in−1∈[p]

πin−1

∑
in∈[p]

Pin−1,in log

(
Pin−1,in

Qin−1,in

)

=DK L

(
{x (1)

0 , . . . , x (1)
n−1}||{x (2)

0 , . . . , x (2)
n−1}

)
+

∑
i∈[p]

πi DK L
(
P[i,:]||Q[i,:]

)
.

Then it is easy to use induction to show that

DK L

(
X (1)||X (2)

)
=DK L

(
{x (1)

0 , . . . , x (1)
n−1}||{x (2)

0 , . . . , x (2)
n−1}

)
+

∑
i∈[p]

πi DK L
(
P[i,:]||Q[i,:]

)
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= · · · = DK L

(
x (1)
0

∣∣∣∣∣∣x (2)
0

)
+ n

∑
i∈[p]

πi DK L
(
P[i,:]||Q[i,:]

)
.

(36)

Next, we prove the lower bound for estimating F. Let p0 =
�p/2�, l0 = �p0/{2(r − 1)}�. We construct a sequence of
instances of rank-r Markov chains, with transition matrices
P(1), . . . , P(m) (m to be specified later)

Here {R(k)}mk=1 are i.i.d. Bernoulli p0-by-(r − 1) random
matrices, 0a×b is the a-by-b zero matrix, and 0 < η ≤ 1/2
is some constant to be determined later. Then clearly, P(k)

is a transition matrix, and 1
p1p is the invariant distribution,

then the corresponding frequency matrix is F(k) = 1
pP(k) and

πmax = πmin = 1/p. Since rank(R(k)) ≤ r − 1, we also have
rank(P(k)) ≤ r . Additionally, it is easy to see that each entry
of P(k) is between (1/p − η/2p) and (1/p + η/(2p)). Thus
for any 1 ≤ i ≤ p,

∥∥∥e�i P(k) − π
∥∥∥
1
=

p∑
j=1

|P(k)
i j − π j | ≤ p · η/(2p) ≤ 1/4,

which means τ∗ := τ (1/4) ≤ 1. By definitions of Pp,r and
P∗

p,r , we have for any k that

P(k) ∈ P∗
p,r ⊆ Pp,r . (38)

Now for any k �= l,

‖F(k) − F(l)‖1 = 1

p
‖P(k) − P(l)‖1 = 2l0η

p2
‖R(k) − R(l)‖1

=2l0η

p2

p0∑
i=1

r−1∑
j=1

∣∣∣R(k)
i j − R(l)

i j

∣∣∣ .

It is easy to see that
{∣∣∣R(k)

i j − R(l)
i j

∣∣∣} are i.i.d. uniformly
distributed on {0, 2}. These random variables also satisfy

E

∣∣∣R(k)
i j − R(l)

i j

∣∣∣ = 1, Var
(∣∣∣R(k)

i j − R(l)
i j

∣∣∣) = 1,∣∣∣∣∣∣R(k)
i j − R(l)

i j

∣∣∣− 1
∣∣∣ = 1.

By Bernstein’s inequality, for any ε > 0 we have

P

(∣∣∣∣∥∥∥F(k) − F(l)
∥∥∥
1
− 2l0ηp0(r − 1)

p2

∣∣∣∣ ≥ 2l0η

p2
ε

)

≤2 exp

( −ε2/2

p0(r − 1) + ε/3

)
.

Set ε = p0(r − 1)/2, m = √�exp(p0(r − 1)/28)�, then we
further have

P

(
∀1 ≤ k < l ≤ m,

l0ηp0(r − 1)

p2
≤
∥∥∥F(k) − F(l)

∥∥∥
1
≤ 3l0ηp0(r − 1)

p2

)

≥1− m(m − 1) exp

(−p0(r − 1)

28

)

>1− m2 exp

(−p0(r − 1)

28

)
> 0.

By such an argument, we can see there exists{
R(1), . . . , R(m)

} ⊆ {−1, 1}p0×(r−1) such that

∀1 ≤ k < l ≤ m,

l0ηp0(r − 1)

p2
≤
∥∥∥F(k) − F(l)

∥∥∥
1
≤ 3l0ηp0(r − 1)

p2
. (39)

We thus assume (39) is satisfied.
Next, we construct m Markov chains of length (n + 1):

{X (1), . . . , X (m)}. For each k ∈ {1, . . . ,m}, x (k)
0 ∼ 1p

p , and

the rest of the states are generated according to P(k) and F(k).
Based on the calculation in (36),

DK L

(
X (k)

∣∣∣∣∣∣X (l)
)
= n

p

p∑
i=1

DK L

(
P(k)
[i,:]

∣∣∣∣∣∣P(l)
[i,:]

)

Based on Lemma 4 and 1/(2p) ≤ P(k)
i j ≤ 3/(2p), we further

have DK L

(
P(k)
[i,:]

∣∣∣∣∣∣P(l)
[i,:]

)
≤ 3p‖P(k)

[i,:] − P(l)
[i,:]‖22. Thus, for any

1 ≤ k < l ≤ m,

DK L

(
X (k)

∣∣∣∣∣∣X (l)
)
≤ 3n

p∑
i=1

‖P(k)
[i,:] − P(l)

[i,:]‖22

=3n
p∑

i, j=1

(
P(k)
i j − P(l)

i j

)2 ≤ 6nη

p

p∑
i, j=1

∣∣∣P(k)
i j − P(l)

i j

∣∣∣
≤6nη · ‖F(k) − F(l)‖1 ≤ 18nη2 l0 p0(r − 1)

p2
.

Now, by the generalized Fano’s lemma (see, e.g., [69], [70]),
we have

inf
F̂

sup
F∈{F(1),...,F(m)}

E

∥∥∥F̂ − F
∥∥∥
1

≥ l0ηp0(r − 1)

p2

(
1− 18nη2l0 p0(r − 1)/p2 + log 2

logm

)
.

P(k) = 1

p
1p1

�
p + η

2p




l0︷ ︸︸ ︷
R(k) · · · R(k)

l0︷ ︸︸ ︷
−R(k) · · · − R(k) 0p0×(p−2l0(r−1))

−R(k) · · · − R(k) R(k) · · · R(k) 0p0×(p−2l0(r−1))
0(p−2p0)×(l0(r−1)) 0(p−2p0)×(l0(r−1)) 0(p−2p0)×(p−2l0(r−1))


 (37)

Authorized licensed use limited to: University of Wisconsin. Downloaded on June 30,2020 at 05:16:32 UTC from IEEE Xplore.  Restrictions apply. 



3220 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 5, MAY 2020

Finally, we set η2 =
{

p2

18nl0 p0(r−1)

( 1
2 log(m) − log(2)

)}∧ 1/2
and apply (38),

inf
F̂

sup
P∈Pp,r

F=diag(π)P

E

∥∥∥F̂ − F
∥∥∥
1
≥ inf

F̂
sup

P∈Pp,r
F=diag(π)P

E

∥∥∥F̂ − F
∥∥∥
1

≥ inf
F̂

sup
F∈{F(1),...,F(m)}

E

∥∥∥F̂ − F
∥∥∥
1

≥ p0l0(r − 1)

2p2
·
√

p2 · ( 12 log(m) − log(2)
)

18np0l0(r − 1)
≥ c

√
pr

n
∧ 1.

Finally, since P(k) = pF(k) based on the set-up,

inf
P̂

sup
P∈Pp,r

E
1

p

∥∥∥P̂ − P
∥∥∥
1
≥ inf

P̂
sup

P∈P∗
p,r

1

p
E

∥∥∥P̂ − P
∥∥∥
1

≥ inf
P̂

sup
P∈{P(1),...,P(m)}

1

p
E

∥∥∥P̂ − P
∥∥∥
1

=p inf
F̂

sup
F∈{F(1),...,F(m)}

1

p
E

∥∥∥F̂ − F
∥∥∥
1
≥ c

√
pr

n
∧ 1.

�

X. PROOFS FOR RESULTS OF SECTION V

A. Proof of Theorem 3

Let G = diag(π)Q be the frequency matrix of transition
x to y. Suppose G = UG�GV�

G is the SVD, where UG ∈
Op,r , VG ∈ Oq,r . Define gmax = max j

∑p
i=1 Gi j . Recall

κ/pq = maxi j Gi j . Then gmax ≤ ∑q
j=1 κ/(pq) = κ/p,

πmax ≤ ∑p
i=1 κ/(pq) ≤ κ/q . Similar to Lemma 7, one can

show that

‖G̃ − G‖ ≤C
(

(πmax ∨ gmax)τ∗ log2(n)

n

)1/2

≤C
(

(p ∨ q)κτ∗ log2(n)

npq

)1/2

(40)

with probability at least 1 − Cn−c. Based on the above
concentration inequality, the rest of the proof of (15) is similar
to the average upper bound result in Theorem 1.
Note that the trivial bound

Emax
i

‖Q̂[i,:] − Q[i,:]‖1 ≤ 2

always holds. In order to prove (16), we only need to
show under the assumption that n ≥ C0τ∗ log2(n)(p ∨
q)

(
r̃ · κ3

p2π2
min

)
. Similarly as the proof of Lemma 8 and

Theorem 1, we have

‖(G̃[i,:] − G[i,:])VG‖2 ≤ C

(
r̃κ3τ∗ log2(n)

npq

)1/2

. (41)

for any 1 ≤ i ≤ p with probability at least 1 − Cn−c . Then
the rest of the proof is essentially the same as the one in the
uniform upper bound of P̂ in Theorem 1. �

B. Proof of Theorem 4

By Lemma 7, one has

P

(
‖F̃ − F‖ ≥ C

√
πmaxτ∗ log2(n)/n

)
≤ n−c0 .

Wedin’s lemma [71] implies

P

(
max

{
‖ sin�(ÛF , UF )‖, ‖ sin�(V̂F , VF )‖

}

≤ C
√

πmaxτ∗ log2(n)/n

σr (F) − σr+1(F)

)
≥ 1− n−c0 .

Let Q be the event that the above inequality holds. Since the
trivial bound

max{‖ sin�(ÛF , UF )‖, ‖ sin�(V̂F , VF )‖} ≤ 1

holds, we must have

Emax
{
‖ sin�(ÛF , UF )‖, ‖ sin�(V̂F , VF )‖

}
≤Emax

{
‖ sin�(ÛF , UF )‖, ‖ sin�(V̂F , VF )‖

}
1Q

+ Emax
{
‖ sin�(ÛF , UF )‖, ‖ sin�(V̂F , VF )‖

}
1Qc

≤C
√

πmaxτ∗ log2(n)/n

σr (F) − σr+1(F)
+ 1 · P(Qc)

≤C
√

πmaxτ∗ log2(n)/n

σr (F) − σr+1(F)
+ 1

nc0
.

Since
∑

i, j Fi j = 1 and 0 ≤ Fi j ≤ 1, we must have

0 ≤σr (F) − σr+1(F) ≤
(∑

i

σ 2
i (F)

)1/2

=‖F‖F =

∑

i j

F2
i j


1/2

≤ ‖F‖1/21 ≤ 1, πmax ≥ 1/p.

Thus, if c0 > 1, one has 1/nc0 ≤ C
√

πmaxτ∗ log2(n)/n
σr (F)−σr+1(F) and

Emax
{
‖ sin�(ÛF , UF )‖, ‖ sin�(V̂F , VF )‖

}
≤C

√
πmaxτ∗ log2(n)/n

σr (F) − σr+1(F)
∧ 1,

which implies (20).
Next we consider ÛP , and V̂P . Note that ‖P‖/(σr (P) −

σr+1(P)) ≥ 1. If n ≤ Cpπmax/(π
2
min p)τ∗ log2(n), the triv-

ial bound E

(
‖ sin�(ÛP , UP )‖ ∨ ‖ sin�(V̂P , V)‖

)
≤ 1

has already provided sharp enough result for proving
(20). Thus for the rest of proof, we assume n ≥
Cpπmax/(π

2
min p)τ∗ log2(n) for large enough constant C . Let

π̃ be the empirical distribution of π ,

π̃ ∈ R
p, π̃i = 1

n

n∑
k=1

1{Xk−1=i}.

Provided that n ≥ C πmaxτ∗ log2(n)
π2
min

for large enough constant

C > 0, we have

‖π̃ − π‖∞ ≤ C

√
πmaxτ∗ log2(n)

n
≤ 1

2
πmin.
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Then

min
i

π̃i ≥ min
i

πi − ‖π̃ − π‖∞ ≥ 1

2
πmin, (42)

and

|πi/π̃i − 1| = |πi − π̃i |
π̃i

≤ 2π−1
min · C

√
πmaxτ∗ log2(n)

n
. (43)

Since P̃ = π̃−1F̃, we have∥∥∥P̃ − P
∥∥∥ =

∥∥∥diag(π̃)−1F̃ − diag(π)−1F
∥∥∥

≤
∥∥∥π̃−1(F̃ − F)

∥∥∥+ ∥∥∥(diag(π)−1 − diag(π̃)−1
)

F
∥∥∥

≤
∥∥∥π̃−1

∥∥∥ · ‖F̃ − F‖ + ‖I − diag(π/π̃)‖ · ‖diag(π)−1F‖

≤
(
min
i

π̃i

)−1

· ‖F̃ − F‖ +max
i

|πi/π̃i − 1| · ‖P‖

(42)(43)≤ Cπ−1
min

√
πmaxτ∗ log2(n)

n

+ Cπ−1
min

√
πmaxτ∗ log2(n)

n
‖P‖.

Since ‖P‖ ≥ ‖ 1√
p1

�
p P‖2 = 1, the inequality above further

yields

∥∥∥P̃ − P
∥∥∥ ≤ Cπ−1

min

√
πmaxτ∗ log2(n)

n
‖P‖.

Finally, by Wedin’s perturbation bound, we have

max
{
‖ sin�(ÛP , UP )‖, ‖ sin�(V̂P , VP )‖

}

≤
C‖P‖ ·

√
(p/n) · πmax/(pπ2

min) · τ∗ log2(n)

σr (P)− σr+1(P)

with probability at least 1− n−c0 . By similar argument as the
one in Theorem 1, one can finally show (20). �

C. Proof of Theorem 5

We focus on the proof for UP and UF and r = 2, as the
proof for VP and VF or r ≥ 3 essentially follows. Without
loss of generality we also assume p is a multiple of 4.
First, we construct a series of rank-2 Markov chain transition
matrices, which are all in P∗

p,r,δP
. To be specific, let

P(k) = 1

p
1p1�p +

√
2δP
p

·


p/2︷ ︸︸ ︷
1p/4 · · · 1p/4

p/2︷ ︸︸ ︷
−1p/4 · · · − 1p/4

−1p/4 · · · − 1p/4 1p/4 · · · 1p/4
ζβ(k) · · · ζβ(k) −ζβ(k) · · · − ζβ(k)

−ζβ(k) · · · − ζβ(k) ζβ(k) · · · ζβ(k)


 .

(44)

Here {β(k)}mk=1 are m copies of i.i.d. Rademacher (p/4)-
dimensional random vectors, 0 < ζ ≤ 1 and m are fixed
values to be determined later. It is not hard to check that the

invariant distribution π = 1
p1p and the SVD of P(k) can be

written as

P(k) =
(

1√
p
1p

)(
1√
p
1p

)�
+ σ (k)u(k)(v(k))�, (45)

where

σ (k) =
√
2ζ

p

√
p2

2
(1+ ζ 2) ≥ ζ,

u(k) = 1√
p
2 (1+ ζ 2)




1p/4
−1p/4
ζβ(k)

−ζβ(k)


 , v(k) = 1√

p

[
1p/2
−1p/2

]
.

Thus, ‖P(k)‖ = 1 and (σ2(P(k)) − σ3(P(k)))/‖P‖ ≥ δP .
Namely, P(k) ∈ P∗

p,r,δP
, k = 1, . . . ,m. Since δP ≤ 1/(4

√
2),

3/4 ≤ pP(k)
i j ≤ 5/4. Thus,

∀1 ≤ i ≤ p, ‖e�i P(k) − π‖1 ≤ 1/4,

which implies τ∗ := τ (1/4) = 1. In summary, P(k) ∈ P∗
p,r,δP

.
Note that (β(k))�β(l) is a sum of (p/4) i.i.d. Rademacher

random variables, by Bernstein’s inequality

P

(
1

p/4

∣∣∣(β(k))�β(l)
∣∣∣ ≥ 1/2

)
≤ 2 exp

(
− p/4 · (1/2)2
2(1+ 1/3 · 1/2)

)
,

then

P

(
∃k �= l, s.t.

1

p/4

∣∣∣(β(k))�β(l)
∣∣∣ ≥ 1

2

)
≤2 · m(m − 1)

2
exp (−p/28) < m2 exp (−p/28) . (46)

If we set m = �exp(−p/56)�, the probability in the right hand
side of (46) is strictly less than 1, which means there must
exists fixed

{
β(k)

}m
k=1 such that

|(β(k))�β(l)| < p/8, ∀1 ≤ k < l ≤ m. (47)

For the rest of the proof we assume (47) always hold. Now,
for any k �= l,∥∥∥sin�

(
U(k)

P , U(l)
P

)∥∥∥ = ‖ sin�(u(k), u(l))‖

=
√
1− (

(u(k))�v(l)
)2 =

√
1−

(
p/2+ 2ζ 2(β(k))�β(l)

p/2+ ζ 2 p/2

)2

≥
√
1−

(
p/2+ ζ 2 p/4

p/2+ ζ 2 p/2

)2

=
√
1−

(
1+ ζ 2/2

1+ ζ 2

)2

=
√

ζ 2/2

1+ ζ 2 ·
(
1+ 1+ ζ 2/2

1+ ζ 2

)
≥
√

ζ 2/2

2
= ζ

2
.

Now for each 1 ≤ k ≤ m, suppose X (k) = {x (k)
0 , . . . , x (k)

n } is a
Markov chain generated from transition matrix P(k) and initial
distribution x (k)

0 ∼ 1
p1p. Then based on the calculation in
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Theorem 2, the KL-divergence between X (k) and X (l) satisfies

DK L

(
X (k)

∣∣∣∣∣∣X (l)
)
= n

p

p∑
i=1

DK L

(
P(k)
[i,:]

∣∣∣∣∣∣P(l)
[i,:]

)
Lemma 4≤ 20n

9

p∑
i=1

‖P(k)
[i,:] − P(l)

[i,:]‖22
(44)≤ 20n

9
· 2δ

2
P

p2
·
(
2ζ 2 p2

)
≤ 80nδ2Pζ 2

9
.

Finally we set ζ =
√

2 log(m)−log 2
80nδ2P/9

. By generalized Fano’s

lemma,

inf
ŨP

sup
P∈{P(1),...,P(m)}

E

∥∥∥sin�(ŨP , UP )
∥∥∥

≥ζ

2

(
1− 80nδ2Pζ 2/9+ log 2

logm

)
≥ ζ

4
≥ c

√
p/n

δP

for large p. We can finally finish the proof for the theorem
by noting that {P(1), . . . , P(m)} ⊆ P∗

p,r,δP
⊆ Pp,r,δP . Note

that the frequency matrix corresponding to P(k) is F(k) =
diag(π)P(k) = P(k)/p for k = 1, . . . ,m, the proof for
the lower bound of UF exactly follows from the previous
arguments. �

D. Proof of Theorem 6

Let P = UP�PV�
P be the singular value decomposition of

P, where UP , VP ∈ Op,r and �P has non-negative diagonal
entries in descending order. Let Z ∈ Rp×r be the group
membership indicator

Zi j =
{

1, i ∈ � j ;
0, i /∈ � j ,

By Proposition 3, each column of P is piece-wise constant
with respect to partitions �1, . . . , �r and P can be written
as P = ZG. Since UP and P share the same column space,
we can write

UP = ZX,

where X ∈ Rr×r satisfies Xkj = (UP )i j , ∀i ∈ [p], j ∈ [r ], i ∈
�k . Denote nk = |�k|, k = 1, . . . , r . Since the columns of UP

are orthonormal, we have X�Z�ZX = U�
PUP = Ir and

(Z�Z)kl =
r∑

i=1

ZikZil =
r∑

i=1

1{i∈�k and i∈�l } = |�k| · 1{k=l}.

Thus, Z�Z = diag(n1, . . . , nr ) and X�diag(n1, . . . , nr )X =
X�Z�ZX = Ir . This implies diag(n1/21 , . . . , n1/2r )X is an
orthogonal matrix and

X[k,:]X�[l,:] = (XX�)kl

= 1√
nknl

(
diag(n1/21 , . . . , n1/2r )XX�diag(n1/21 , . . . , n1/2r )

)
kl

= (nknl)
−1/2 · 1{k=l}, ∀1 ≤ k, l ≤ r.

Therefore, for any two states i, j , if i ∈ �k, j ∈ �l , we have

‖(UP )[i,:] − (UP)[ j,:]‖22 = ‖(ZX)[i,:] − (ZX)[ j,:]‖22
=‖X[k,:] − X[l,:]‖22 = ‖X[k,:]‖22 + ‖X[l,:]‖22 + 2X�[k,:]X[l,:]

= 1

|�k| +
1

|�l | − 2 (|�k| · |�l |)−1/2 · 1{k=l}

=



0, i and j belong to the same group, i.e., k = l;
1

|�k | + 1
|�l | ,

otherwise.

Next, the k-means misclassification rate can be bounded by
the sin� distance between ÛP and UP [42, Lemma 5.3]:

M(�̂1, . . . , �̂r ) ≤
(
C min

O∈Or

‖ÛP − UPO‖2F
)
∧ r

≤
(
C
∥∥∥sin�

(
ÛP , UP

)∥∥∥2
F

)
∧ r, (48)

where C is a uniform constant and Or is the class of all r -by-r
orthogonal matrices. Since P is state-aggregatable with respect
to r groups, by Proposition 3, rank(P) ≤ r and σr+1(P) = 0.
Based on the proof of Theorem 4, we have

P(A) ≥ 1− n−c, A =
{∥∥∥sin�(ÛP , UP )

∥∥∥2
F

≤ C‖P‖2 pr · τ∗ log2(n) · πmax/(π
2
min p)

nσ 2
r (P)

∧ r

}
(49)

for some c > 1. Combining (48), (49), and the trivial bound
M(�̂1, . . . , �̂r ) ≤ r , we have

EM(�̂1, . . . , �̂r )

= EM(�̂1, . . . , �̂r )1A + EM(�̂1, . . . , �̂r )1Ac

≤
(
C‖P‖2 pr · τ∗ log2(n) · πmax/(π

2
min p)

nσ 2
r (P)

+ rn−c

)
∧ r.

Since ‖P‖/σr (P) ≥ 1 and c > 1, one has r/nc ≤
C‖P‖2 pr ·τ∗ log2(n)·πmax/(π

2
min p)

nσ 2
r (P)

. Then,

EM(�̂1, . . . , �̂r )≤ C‖P‖2 pr · τ∗ log2(n) · πmax/(π
2
min p)

nσ 2
r (P)

∧ r,

which has finished the proof for Theorem 6. �

E. Proof of Theorem 7

Denote E = F̃−F. Recall from Prop. 4 and the discussions
in its proof, F can be decomposed as F = F1+F2, where F1 is
a rank-r matrix and the right singular vectors VF1 has piece-
wise constant structure, i.e., (VF1)[i,:] = (VF1)[i ′,:] whenever
i, i ′ belong to the same group. Based on the problem set-up,
we can assume that the SVDs of F1 and F̃ are

F1 = UF1�F1V�
F1 , F̃ = ÛF �̂F V̂�

F + ÛF,⊥�̂F,⊥V̂�
F,⊥.

Here, UF1, VF1 , ÛF , V̂F ∈ Op,r , ÛF,⊥, V̂F,⊥ ∈ Op,p−r are
the orthogonal complement of ÛF , V̂F . �F1, �̂F , and �̂F,⊥
are diagonal matrices with non-negative and non-increasing
diagonal entries; ÛF �̂F V̂�

F correspond to the leading r prin-
cipal components of F̃, while ÛF,⊥�̂F,⊥V̂�

F,⊥ correspond to
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the remainders. Since F̃ − F1 = (F̃ − F) + F − F1 = E + F2,
Wedin’s perturbation lemma [71] implies∥∥∥sin�(V̂F , VF1)

∥∥∥
F

≤max{‖(E + F2)V̂F‖F , ‖ÛF (E + F2)‖F }
σmin(�̂F ) − 0

∧√
r .

Note that for any matrix M,

‖M‖F =

rank(M)∑

i=1

σ 2
i (M)


1/2

≤ √
rank(M)σ1(M)

=√rank(M)‖M‖.

Provided that ÛF and V̂F are p-by-r matrices with orthogonal
columns, we have

max
{
rank(F2V̂F ), rank(EV̂F ), rank(Û�

FF2), rank(Û�
FE)

}
≤r

and

max
{
‖(E + F2)V̂F‖F , ‖Û�

F (E + F2)‖F
}

≤max
{
‖EV̂F‖F , ‖Û�

FE‖F
}

+max
{
‖F2V̂F‖F , ‖Û�

FF2‖F
}

≤max

{√
rank(EV̂F )‖EV̂F‖,

√
rank(Û�

FE)‖Û�
FE‖

}
+ (√

r‖F2‖
) ∧ ‖F2‖F

≤√r‖E‖ + (√
r‖F2‖

) ∧ ‖F2‖F .

Since F1F�
2 = 0, Lemma 2 in [44] implies σr (F) = σr (F1 +

F2) ≥ σr (F1); by Weyl’s perturbation bound [72], |σr (F̃) −
σr (F)| ≤ ‖F̃ − F‖ = ‖E‖. These two inequalities together
imply

σmin(�̂F ) = σr (F̃) ≥ σr (F) − ‖E‖ ≥ σr (F1) − ‖E‖.
Therefore,∥∥∥sin�(V̂F , VF1)

∥∥∥
F
≤

√
r‖E‖ + (

√
r‖F2‖) ∧ ‖F2‖F

σr (F1) − ‖E‖ ∧ √
r .

Note that for any real values z ≥ 0, y ≥ x ≥ 0,

x/y=1− (y − x)/y≤1−(y − x)/(y + z)=(x + z)/(y + z).

Thus, if ‖E‖ + ‖F2‖ ∧ (‖F2‖F/
√
r) ≤ σr (F1) − ‖E‖,

1√
r

∥∥∥sin�(V̂F , VF1)
∥∥∥
F

≤‖E‖ + ‖F2‖ ∧ (‖F2‖F/
√
r)

σr (F1) − ‖E‖ ∧ 1

≤‖E‖ + ‖F2‖ ∧ (‖F2‖F/
√
r) + ‖E‖

σr (F1) − ‖E‖ + ‖E‖ ∧ 1

=2‖E‖ + ‖F2‖ ∧ (‖F2‖F/
√
r)

σr (F1)
∧ 1;

if ‖E‖ + ‖F2‖ ∧ (‖F2‖F/
√
r) > σr (F1) − ‖E‖,

1√
r

∥∥∥sin�(V̂F , VF1)
∥∥∥
F

≤‖E‖ + ‖F2‖ ∧ (‖F2‖F/
√
r)

σr (F1) − ‖E‖ ∧ 1

= 1 = 2‖E‖ + ‖F2‖ ∧ (‖F2‖F/
√
r)

σr (F1)
∧ 1.

Therefore, we always have

∥∥∥sin�(V̂F , VF1)
∥∥∥
F
≤ 2

√
r‖E‖ + (

√
r‖F2‖) ∧ ‖F2‖F

σr (F1)
∧√

r .

By Lemma 7, there exists constants C > 0 such that

P


‖E‖ =

∥∥∥F̃ − F
∥∥∥ ≤ C

√
πmaxτ∗ log2(n)

n


 ≥ 1− n−c.

for some c > 1. This implies the following upper bound for
the sin� loss of V̂F ,

P (A) ≥ 1− n−c,

where A =
{∥∥∥sin�(V̂F , VF1)

∥∥∥
F

≤ C
√

πmaxrτ∗ log2(n)/n + (
√
r‖F2‖) ∧ ‖F2‖F

σr (F1)
∧√

r

}
.

(50)

Next, we prove the upper bound for the misclassification
rate of r -means based on (50). By Proposition 4, each col-
umn of VF1 is piece-wise constant with respect to partitions
�1, . . . , �r and we can write VF1 = ZX, where Z ∈ Rp×r is
the membership indicator,

Zi j =
{

1, i -th state ∈ � j ;
0, i -th state /∈ � j ,

and X ∈ Rr×r , Xkj = (VF1)i j , ∀i ∈ [p], j ∈ [r ], i ∈ �k .
Since the columns of VF1 are orthonormal, X�Z�ZX =
V�

F1
VF1 = Ir . Denote nk = |�k |, k = 1, . . . , r . Note that

(Z�Z)kl =
r∑

i=1

ZikZil =
r∑

i=1

1{i∈�k and i∈�l } = |�k | · 1{k=l}.

Thus, Z�Z = diag(n1, . . . , nr ) and X�diag(n1, . . . , nr )X =
X�Z�ZX = Ir . This implies diag(n1/21 , . . . , n1/2r )X is an
orthogonal matrix and

X[k,:]X�[l,:] = (XX�)kl

=n−1/2
k

(
diag(n1/21 , . . . , n1/2r )XX�diag(n1/21 , . . . , n1/2r )

)
kl

× n−1/2
l

= (nk · nl)−1/2 · 1{k=l}, ∀1 ≤ k, l ≤ r. (51)
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Therefore, for any two states i, j , if i ∈ �k, j ∈ �l , then

‖(VF1)[i,:] − (VF1)[ j,:]‖22
=‖(ZX)[i,:] − (ZX)[ j,:]‖22 = ‖X[k,:] − X[l,:]‖22
=‖X[k,:]‖22 + ‖X[l,:]‖22 + 2X�[k,:]X[l,:]

= 1

|�k | +
1

|�l | − 2 (|�k| · |�l |)−1/2 · 1{k=l}

=



0, i and j belong to the same group, i.e., k = l;
1

|�k | + 1
|�l | ,

otherwise.
(52)

Next, the error bound of k-means approximation [42,
Lemma 5.3] yields

M(�̂1, . . . , �̂r ) ≤ C min
O∈Or

‖V̂F − VF1O‖2F ∧ r

≤C
∥∥∥sin�

(
V̂F , VF1

)∥∥∥2
F
∧ r, (53)

where C is a uniform constant and Or is the class of all r -by-r
orthogonal matrices. Combining (50) and (53) and the trivial
bound M(�̂1, . . . , �̂r ) ≤ r , we have

EM(�̂1, . . . , �̂r )

=EM(�̂1, . . . , �̂r )1A + EM(�̂1, . . . , �̂r )1Ac

≤
(
C
(
πmaxrτ∗ log2(n)/n + (r‖F2‖2) ∧ ‖F2‖2F

)
σ 2
r (F1)

+ r/nc
)
∧ r.

By the proof of Theorem 4, one has σr (F) ≤ 1. Thus, if c ≥ 1,
one has r/nc ≤ Cπmaxrτ∗ log2(n)/n

σ 2
r (F)

and

EM(�̂1, . . . , �̂r )

≤C
(
πmaxrτ∗ log2(n)/n + (r‖F2‖2) ∧ ‖F2‖2F

)
σ 2
r (F1)

∧ r,

which has finished the proof for Theorem 7.

XI. TECHNICAL LEMMAS

We collect the technical lemmas for the main results in
this section. The first Lemma 1 demonstrates a sufficient
and necessary condition for being transition and frequency
matrices of some ergodic Markov chain.

Lemma 1 (Properties of transition and frequency matrices
for ergodic Markov process). P, F ∈ R

p×p are the transition
matrix and frequency matrix of some ergodic finite-state-space
Markov process if and only if

P∈Pp=
{

P : 0 ≤ Pi j ≤ 1; ∀1 ≤ i ≤ p,
∑p

j=1 Pi j = 1;
∀I ⊆ {1, . . . , p}, P[I,I c ] �= 0

}
,

(54)

and

F ∈ Fp =
{

F ∈ R
p×p : F1p = F�1p, 1�p F1p = 1,

∀I ⊆ {1, . . . , p}, F[I,I c ] �= 0

}
.

(55)

Proof of Lemma 1. The proof for the transition matrix (54) is
by definition. Then we consider the condition for F. When F ∈
Rp×p is the frequency matrix of some ergodic Markov chain,
we have F = diag(π)P, where π and P are the corresponding
invariant distribution and stochastic matrix. Then

F1p = diag(π)P1p = diag(π)1p = π,

F�1p = P�diag(π)1p = P�π = π = F1p,

1�p F1p = 1�pπ = 1.

Here we used the fact that π�P = π� and P1p = 1p . Next,
since the finite-state-space Markov process is ergodic, πi > 0
for any i . Thus for any I ⊆ {1, . . . , p}, F[I,I c ] = diag(πI ) ·
P[I,I c ] �= 0. This implies F ∈ Fp.
On the other hand when F ∈ Fp, we define π = F1p,

P = diag(π−1)F. Since F[{i},{i}c ] �= 0, we have πi �= 0 for
any 1 ≤ i ≤ p. Then P is well-defined. In addition, π and P
satisfies the following properties

1�pπ = 1�p F1p = 1, Pi j ≥ 0,

P1p = diag(π−1)F1p = diag(π−1)π = 1p,

π�P = π�diag(π)−1F = 1�p F = (F�1p)� = (F1p)� = π,

∀I ⊆ {1, . . . , p}, P[I,I c ] = diag(π−1
I ) · F[I,I c ] �= 0. (56)

By comparing above properties with the definition of ergodic
transition matrix (54), we can see F is indeed a frequency
matrix of some ergodic Markov process. Thus, we have
finished the proof of this lemma. �
The next Lemma 2 characterizes the 	1 distance between

two vectors after 	1 normalization, which will be used in the
upper bound argument in the main context of the paper.

Lemma 2. Suppose u, v �= 0 are two vectors of the same
dimension, then∥∥∥∥ u

‖u‖1 − v

‖v‖1
∥∥∥∥
1
≤ 2‖u − v‖1

max{‖u‖1, ‖v‖1} . (57)

Proof of Lemma 2.∥∥∥∥ u

‖u‖1 − v

‖v‖1
∥∥∥∥
1
≤
∥∥∥∥u − v

‖u‖1
∥∥∥∥
1
+
∥∥∥∥ v

‖u‖1 − v

‖v‖1
∥∥∥∥
1

=‖u − v‖1
‖u‖1 + |‖u‖1 − ‖v‖1|

‖u‖1 ≤ 2‖u − v‖1
‖u‖1 .

Similarly,
∥∥∥ u
‖u‖1 − v

‖v‖1
∥∥∥
1
≤ 2‖u−v‖1‖v‖1 , which implies (57). �

The following Lemma 3 demonstrate the error for truncated
singular value decomposition.

Lemma 3. For any matrix M with singular value decomposi-
tion M = ∑

k≥1 σkukv�k and r ≥ 1, we define Mmax(r) =∑r
k=1 σkukv�k and M−max(r) = ∑

k≥r+1 σkukv�k = M −
Mmax(r) as the leading and non-leading parts of M. Suppose
Ã and A are any two matrices of the same dimension. Then,∥∥∥Ãmax(r) − A

∥∥∥
F

≤2√2r
∥∥∥Ã − A

∥∥∥+ 2
√
2r‖A−max(r)‖ + ‖A−max(r)‖F .

(58)
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Particularly, if rank(A) ≤ r , we also have

∥∥∥Ãmax(r) − A
∥∥∥
F
≤ 2‖Ã − A‖F . (59)

Proof of Lemma 3. Note that Ãmax(r) and Amax(r) are both
of rank-r , thus Ãmax(r) − Amax(r) is of rank at most 2r , and
‖Ãmax(r) − Amax(r)‖F ≤ √

2r‖Ãmax(r) − Amax(r)‖. By Weyl’s
inequality [72], σr+1(Ã) ≤ σr+1(A) + ‖A − Ã‖ for any r .
Therefore,

‖Ãmax(r) − A‖F
≤‖Ãmax(r) − Amax(r)‖F + ‖A−max(r)‖F
≤√2r‖Ãmax(r) − Amax(r)‖ + ‖A−max(r)‖F
≤√2r

(
‖Ã − A‖ + ‖Ã−max(r)‖ + ‖A−max(r)‖

)
+ ‖A−max(r)‖F

=√
2r

(
‖Ã − A‖ + σr+1(Ã) + σr+1(A)

)
+ ‖A−max(r)‖F

(a)≤√
2r

(
‖Ã − A‖ + 2σr+1(A) + ‖Ã − A‖

)
+ ‖A−max(r)‖F

=2
√
2r‖Ã − A‖ + 2

√
2r‖A−max(r)‖ + ‖A−max(r)‖F ,

which yields (58). Here, (a) is due to the Weyl’s inequality.
Additionally, if rank(A) ≤ r , we have

∥∥∥Ãmax(r) − A
∥∥∥
F
≤ ‖Ãmax(r) − Ã‖F + ‖Ã − A‖F

= min
rank(M)≤r

‖Ã − M‖F + ‖Ã − A‖F

≤‖Ã − A‖F + ‖Ã − A‖F = 2‖Ã − A‖F .

which yields (59). �
Our next lemma characterizes the relation between KL

divergence and 	2 distance between two discrete distribution
vectors.

Lemma 4. For any two distributions u, v ∈ Rp, such that∑p
i=1 ui = 1,

∑p
i=1 vi = 1. If there exists 0 < a ≤ 1/p ≤

b such that a ≤ ui , vi ≤ b for 1 ≤ i ≤ p, then the KL-
divergence and 	2 norm distance are equivalent, in the sense
that,

a

2b2
‖u − v‖22 ≤ DK L(u||v) ≤ b

2a2
‖u − v‖22, (60)

Here DK L(u||v) = ∑p
i=1 ui log(ui/vi ) is the KL-divergence

between u and v.

Proof of Lemma 4. By Taylor’s expansion, there exists ξi
between ui and vi , such that

log(vi/ui ) = log(vi ) − log(ui ) = vi − ui
ui

− (vi − ui )2

2ξ2i
,

Thus,

DK L(u||v) =
p∑

i=1

−ui log(vi/ui )

=
p∑

i=1

{
−(vi − ui ) + ui (vi − ui )2

2ξ2i

}

≤
p∑

i=1

b(ui − vi )
2

2a2
= b

2a2
‖u − v‖22;

DK L(u||v) =
p∑

i=1

−ui log(vi/ui )

=
p∑

i=1

{
−(vi − ui ) + ui (vi − ui )2

2ξ2i

}

≥
p∑

i=1

a(ui − vi )
2

2b2
= a

2b2
‖u − v‖22,

which has finished the proof for this lemma. �
The following Lemma 5 establishes a Markov mixing

time comparison inequality between τ (ε) and τ (δ) for any
values ε and δ. This result is slightly more general than
Theorem 4.9 in [52].

Lemma 5 (Markov Mixing Rate). Let τ (ε) be the mixing time
defined in (1) where ε ≤ δ < 1/2, then

τ (ε) ≤ τ (δ) ·
(⌈

log(ε/δ)

log(2δ)

⌉
+ 1

)
. (61)

Proof of Lemma 5. We denote {e(i)}pi=1 as the canonical basis
for Rp , namely e(i) is equal to 1 in its i -th entry and equal to
0 elsewhere. For any vector θ ∈ R

p , we also use θ+, θ− ∈ R
p

to denote the positive and negative parts of θ , respectively, i.e.

(θ+) j = min{θ j , 0}, (θ−) j = −max{θ j , 0}, 1 ≤ j ≤ p.

(62)

Clearly θ+ ≥ 0, θ− ≥ 0, and θ = θ+ − θ−. Suppose k = τ (δ),
then for any distribution θ ∈ Rp with

∑
i θi = 1, θi ≥ 0, and

any integer k ′ ≥ k, we must have

1

2

∥∥∥(P�)k
′
θ − π

∥∥∥
1
= 1

2

∥∥∥∥∥
p∑

i=1

(P�)k
′
θi e

(i) − π

∥∥∥∥∥
1

≤
p∑

i=1

|θi | · 1
2

∥∥∥(P�)k
′
e(i) − π

∥∥∥
1
≤

p∑
i=1

|θi | · δ = δ. (63)

When θ and π are both distributions,
∑p

j=1(P
�)kθ j =∑p

j=1 π j = 1, then
∑p

j=1((P
�)kθ − π) j = 0, and∥∥∥∥((P�)kθ − π

)
+

∥∥∥∥
1
=
∥∥∥∥((P�)k

′
θ − π

)
−

∥∥∥∥
1

=1

2

∥∥∥(P�)kθ − π
∥∥∥
1
. (64)
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Next, we consider any integer k ′ ≥ 2k, then k ′ − k. One can
calculate that

1

2

∥∥∥(P�)k
′
θ − π

∥∥∥
1
= 1

2

∥∥∥(P�)k
′−k((P�)kθ − π)

∥∥∥
1

=1

2

∥∥∥(P�)k
′−k

[
((P�)kθ − π)+ − ((P�)kei − π)−

]∥∥∥
1

≤1

2

∥∥∥∥(P�)k
′−k ((P�)kθ−π)+

‖((P�)kθ−π)+‖1 − π

∥∥∥∥
1

· ‖((P�)kθ − π)+‖1
+ 1

2

∥∥∥∥(P�)k
′−k ((P�)kθ − π)−

‖((P�)kθ − π)−‖1 − π

∥∥∥∥
1

· ‖((P�)kθ − π)−‖1
(63)(64)≤ δ

(∥∥∥((P�)kθ − π)+
∥∥∥
1
+
∥∥∥((P�)kθ − π)−

∥∥∥
1

)
≤δ‖(P�)kθ − π‖ ≤ 1

2
(2δ)2.

By induction, one can show for any integers l, we must have

∀k ′ ≥ lk,
1

2
‖(P�)k

′
θ − π‖1 ≤ 1

2
(2δ)l .

Note that δ < 1/2, ε ≤ δ, we set l = � log(ε/δ)log(2δ) � + 1. Then for
any k ′ ≥ kl,

1

2

∥∥∥(P�)k
′
θ − π

∥∥∥
1
≤ 1

2
(2δ)l ≤ 1

2
(2δ)

log(ε/δ)
log(2δ) +1

=1

2
2δ · (ε/δ) = ε, (65)

which implies τ (ε) ≤ kl = τ (δ) · (�log(ε/δ)/ log(2δ)� + 1),
and complete the proof for (61). Thus we have finished the
proof for Lemma 5. �
The next Lemma 6 relates the Markov mixing time to the

eigengap condition.

Lemma 6 (Markov Mixing Time and Eigengap Condition
([52). , Theorem 12.3)] Suppose P ∈ Rp×p is the transition
matrix of an ergodic and reversible Markov chain with invari-
ant distribution π . Suppose λ2 is its second largest eigenvalue,
then λ2 ∈ R, |λ2| ≤ 1, and

τ (ε) ≤ 1

1− λ2
log

(
1

επmin

)
. (66)

Lemma 7 (Markov Chain Concentration Inequality). Suppose
P ∈ Rp×p is an ergodic Markov chain transition matrix on p
states {1, . . . , p}. P is with invariant distribution π and the
Markov mixing time τ (ε) defined as (1). Recall the frequency
matrix is F = diag(π)P. Given a Markov trajectory with (n+
1) observable states X = {x0, x1, . . . , xn} from any initial
state, we denote the empirical invariant distribution π̃ and
empirical frequency matrix as

π̃ = 1

n

n∑
k=1

exk , where exk is the indicator such that,

(exk )i =
{

1, xk = i;
0, xk �= i; (67)

F̃ = 1

n

n∑
k=1

Ek, where Ek ∈ R
p×p,

(Ek)i j =
{

1, (xk−1, xk) = (i, j);
0, otherwise.

(68)

Let t > 0, α = τ ((t/2) ∧ πmax)+ 1. Recall ‖ · ‖ is defined as
the matrix 2-norm, ‖ · ‖∞ is defined as the vector 	∞ norm.
Then

∀t > 0,P
(∥∥∥F̃ − F

∥∥∥ ≥ t
)
≤ 2αp exp

(
− nt2/8

2πmaxα + tα/6

)
,

(69)

∀t > 0,P (‖π̃ − π‖∞ ≥ t) ≤ 2αp exp

(
− nt2/8

2πmaxα + tα/6

)
.

(70)

For any constant c0 > 0, there exists constant C > 0 such
that if n ≥ C

(
τ (
√

πmax/n) log(n)/πmax ∨ p
)
, we have

P


∥∥∥F̃ − F

∥∥∥ ≥ C

√
πmaxτ (

√
πmax/n) log(n)

n


 ≤ n−c0 ,

(71)

P


‖π̃ − π‖∞ ≥ C

√
πmaxτ (

√
πmax/n) log(n)

n


 ≤ n−c0 ,

(72)

Additionally, let τ∗ = τ (1/4). For any constant c0 > 0,
there exists constant C > 0 such that if n ≥ Cτ∗ p log2(n),
then

P


∥∥∥F̃ − F

∥∥∥ ≥ C

√
πmaxτ∗ log2(n)

n


 ≤ n−c0 , (73)

P


‖π̃ − π‖∞ ≥ C

√
πmaxτ∗ log2(n)

n


 ≤ n−c0 . (74)

When P is reversible with second largest eigenvalue λ2 < 1
and c0 > 0 is any constant, there exists constant C > 0 such
that if n ≥ Cp log(n) log(n/πmin), then

P

(∥∥∥F̃ − F
∥∥∥ ≥ C

√
πmax log(n/πmin) log(n)

n(1− λ2)

)
≤ n−c0 ,

(75)

P

(
‖π̃ − π‖∞ ≥ C

√
πmax log(n/πmin) log(n)

n(1− λ2)

)
≤ n−c0 .

(76)

Proof of Lemma 7. Let n0 = �n/α�. Without loss of
generality, assume n is a multiple of α. We introduce the “thin”
sequences as

ẽ(l)
k = exkα+l − E

(
exkα+l

∣∣ex(k−1)α+l

)
,

l = 1, . . . , α; k = 1, . . . , n0; (77)

Ẽ(l)
k = Ekα+l − E

(
Ekα+l |E(k−1)α+l

)
,

l = 1, . . . , α; k = 1, . . . , n0. (78)
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By Jensen’s inequality, for any l = 1, . . . , α, k = 1, . . . , n0,∥∥E (
exkα+l

∣∣ex(k−1)α+l

)∥∥
2 ≤ E‖exkα+l ‖2 ≤ 1,∥∥E (

Ekα+l |E(k−1)α+l
)∥∥ ≤ E‖Ekα+l‖ ≤ 1,

which implies ∥∥∥ẽ(l)
k

∥∥∥
2
≤ 2,

∥∥∥Ẽ(l)
k

∥∥∥ ≤ 2. (79)

Now we develop the concentration inequalities of the partial
sum sequences

∑n0
k=1 Ẽ(l)

k for any fixed l. Note that for any
given Ẽ(l)

k−1 and e
x̃ (l)
k−1

, i.e. given the values of (xkα+l−1, xkα+l)

pair, the conditional distribution of exkα+l−1 satisfies

xkα+l−1|x(k−1)α+l ∼ e�x(k−1)α+l
Pα−1, k = 1, . . . , n0.

For convenience, we denote π̃(k,l) =
(
e�x(k−1)α+l

Pα−1
)� ∈ Rp.

By the choice of α and the mixing time property,

‖π̃(k,l) − π‖1 =
∥∥∥e�x(k−1)α+l

Pα−1 − π
∥∥∥
1
≤ min{t/2, πmax}.

(80)

(80) will be crucial to our later analysis. Note that

Ẽ(l)
k = Ekα+l − E

(
Ekα+l

∣∣∣x(k−1)α+l

)
,

where Ekα+l = exkα+l−1 · e�xkα+l
, (81)

P

(
Ekα+l = eie

�
j

∣∣∣x(k−1)α+l

)
=P

(
(xkα+l−1, xkα+l) = (i, j)

∣∣∣x(k−1)α+l

)
=
(
e�x(k−1)α+l

Pα−1
)
i
· Pi j = (π̃(k,l))iPi j , (82)

we can further calculate that

E

(
Ekα+lE�

kα+l

∣∣∣x(k−1)α+l

)

=
p∑

i=1

p∑
j=1

eie
�
i (π̃(k,l))iPi j =

p∑
i=1

eie
�
i (π̃(k,l))i

=diag
(
π̃(k,l)

) = diag(π) + diag
(
π̃(k,l) − π

)
�πmaxIp +

∥∥π̃(k,l) − π
∥∥
1 · Ip � 2πmaxIp; (83)

E

(
E�
kα+lEkα+l

∣∣∣x(k−1)α+l

)
=

p∑
i=1

p∑
j=1

e j e
�
j

{
(π̃(k,l))iPi j

}

=
p∑

i=1

p∑
j=1

e j e
�
j

{
πiPi j

}+ p∑
i=1

p∑
j=1

e j e
�
j

{
((π̃(k,l))i − π)iPi j

}

�
p∑

j=1

e j e
�
j π j +

p∑
j=1

e j e
�
j

∥∥π̃(k,l) − π
∥∥
1 ·max

i j
Pi j

(since π�P = π)

�πmaxIp +
∥∥π̃(k,l) − π

∥∥
1 · Ip � 2πmaxIp. (84)

Therefore,

0 � E

(
Ẽ(l)
k (Ẽ(l)

k )�
∣∣∣Ẽ(l)

k−1

)
=E

{ (
Ekα+l − E(Ekα+l |x(k−1)α+l)

)
· (Ekα+l − E(Ekα+l |x(k−1)α+l)

)� ∣∣∣x(k−1)α+l

}

=E

{
Ekα+1E�

kα+1

∣∣∣x(k−1)α+l

}
− E

{
Ekα+l

∣∣∣x(k−1)α+l

}
E

{
E�
kα+l

∣∣∣x(k−1)α+l

}
�E

{
Ekα+1E�

kα+1

∣∣∣x(k−1)α+l

}
� 2πmaxIp. (85)

Similarly,

0 �E

(
(Ẽ(l)

k )�Ẽ(l)
k

∣∣∣Ẽ(l)
k−1

)
=E

{ (
Ekα+l − E(Ekα+l |x(k−1)α+l)

)�
(
Ekα+l − E(Ekα+l |x(k−1)α+l)

) ∣∣∣x(k−1)α+l

}

=E

{
E�
kα+1Ekα+1

∣∣∣x(k−1)α+l

}
− E

{
E�
kα+l

∣∣∣x(k−1)α+l

}
E

{
Ekα+l

∣∣∣x(k−1)α+l

}
�E

{
E�
kα+1Ekα+1

∣∣∣x(k−1)α+l

}
� 2πmaxIp, (86)

which means for 1 ≤ k ≤ n0, 1 ≤ l ≤ α,

max
{ ∥∥∥E (

(Ẽ(l)
k )�Ẽ(l)

k

∣∣∣Ẽ(l)
k−1

)∥∥∥ ,∥∥∥E (
Ẽ(l)
k (Ẽ(l)

k )�
∣∣∣Ẽ(l)

k−1

)∥∥∥ } ≤ 2πmaxIp. (87)

Next, the predictable quadratic variation process of the mar-

tingale
{

Ẽ(l)
k

}n0
k=1

satisfies

∥∥∥∥∥
n0∑
k=1

E

(
Ẽ(l)
k (Ẽ(l)

k )�
∣∣∣Ẽ(l)

k−1

)∥∥∥∥∥
≤

n0∑
k=1

∥∥∥E (
Ẽ(l)
k (Ẽ(l)

k )�
∣∣∣Ẽ(l)

k−1

)∥∥∥ ≤ 2n0πmax,∥∥∥∥∥
n0∑
k=1

E

(
(Ẽ(l)

k )�Ẽ(l)
k

∣∣∣Ẽ(l)
k−1

)∥∥∥∥∥
≤

n0∑
k=1

∥∥∥E (
(Ẽ(l)

k )�Ẽ(l)
k

∣∣∣Ẽ(l)
k−1

)∥∥∥ ≤ 2n0πmax.

Now by matrix Freedman’s inequality (Corollary 1.3 in [73]),
we know

P

(∥∥∥∥∥ 1

n0

n0∑
k=1

Ẽ(l)
k

∥∥∥∥∥ ≥ t/2

)
≤ 2p exp

(
− (tn0)2/8

2n0πmax + tn0/6

)
.

(88)
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Here, ‖ · ‖ represents the matrix 2-norm. Next, we shall note
that

E

(
Ekα+l

∣∣∣x(k−1)α+l

)
− diag(π)P

=
p∑

i=1

p∑
j=1

ei
(
e�x(k−1)α+l

Pα−1
)
i
Pi j e

�
j − diag(π)P

=diag
(
e�x(k−1)α+l

Pα−1
)

P − diag(π)P,

thus ∥∥∥E (
Ekα+l

∣∣∣x(k−1)α+l

)
− diag(π)P

∥∥∥ ≤ ∥∥(π̃(k,l) − π)P
∥∥

= max
u,v∈Rp

‖u‖2=‖v‖2=1

u�diag(π̃(k,l) − π)Pv

≤ max
u,v∈Rp

‖u‖2=‖v‖2=1

p∑
i=1

∣∣ui ((π̃(k,l))i − πi )Pi j v j
∣∣

≤
p∑

i=1

p∑
j=1

∣∣((π̃(k,l))i − πi )Pi j
∣∣ ≤ ‖π̃(k,l) − π‖1

(80)≤ t/2.

(89)

The last but one equality is due to
∑p

j=1 |Pi j | = ∑p
j=1 Pi j = 1

for all i . Combining (78), (88), and (89), we have for any
l = 1, . . . , α,

P

(∥∥∥∥∥ 1

n0

n0∑
k=1

Ekα+l−F

∥∥∥∥∥≥ t

)
≤2p exp

(
− (tn0)2/8

2n0πmax+tn0/6

)
.

(90)

Finally, we only need to combine these “thin” summation
sequences by using a union bound,

P

(
‖F̃ − F‖ ≥ t

)
= P

(∥∥∥∥∥ 1α
α∑

l=1

1

n0

n0∑
k=1

Ekα+l − F

∥∥∥∥∥ ≥ t

)

≤P

(
max
1≤l≤α

∥∥∥∥∥
n0∑
k=1

1

n0
Ekα+l − F

∥∥∥∥∥ ≥ t

)

≤α max
1≤l≤p

P

(∥∥∥∥∥
n0∑
k=1

1

n0
Ekα+l − F

∥∥∥∥∥ ≥ t

)

≤2αp exp

(
− (tn0)2/8

2n0πmax + tn0/6

)
, (91)

which proves (69). Particularly by setting t =
C
√

πmaxτ (
√

πmax/n) log(n)
n for large constant C , one further

obtains (7). When τ∗ = τ (1/4), Lemma 5 implies

τ (
√

πmax/n) ≤ Cτ∗ log(
√
n/πmax) ≤ Cτ∗ log(

√
np)

≤ Cτ∗ log(n),

thus (73) immediately follows from (7).
When P is reversible and with second largest eigenvalue

λ2 < 1, Lemma 6 implies

τ
(√

πmax/n
)
≤ 1

1− λ2
log

(√
n/πmax

2πmin

)
≤ C

1− λ2
(log(n) + log(1/πmin)) = C

1− λ2
log(n/πmin).

Then (7) follows from (7).

The proof for the upper bounds ‖π̃−π‖∞ is similar. Recall
the definition of ẽ(l)

k in (77). Note that for any index j ∈
{1, . . . , p},(

ẽ(l)
k

)
j
= (

exkα+l

)
j − E

((
exkα+l

)
j

∣∣∣ex(k−1)α+l

)
=1{xkα+l= j } − E

(
1{xkα+l= j }

∣∣∣x(k−1)α+l

)
.

Clearly 0 ≤ E

(
1{xkα+l= j }

∣∣∣x(k−1)α+l

)
≤ 1, which implies∣∣∣(ẽ(l)

k ) j

∣∣∣ ≤ 1. Additionally,

E

(
ẽ(l)
k

)2
j
= Var

(
1{xkα+l= j }

∣∣x(k−1)α+l
) ≤ E

(
12{xkα+l= j }

)
=
(
e�x(k−1)α+l

Pα
)
j

≤ π j +
(
e�x(k−1)α+lP

α − π�)
j
≤ 2πmax.

By Freedman’s inequality (e.g. Theorem 1.6 in [74] and
Theorem 1.1 in [73]), for any 1 ≤ j ≤ p,

P

(∣∣∣∣∣
n0∑
k=1

(ẽ(l)
k ) j

∣∣∣∣∣ ≥ t/2

)
≤ 2 exp

( −t2/8

2n0πmax + t/6

)

On the other hand,∥∥∥E (
exkα+l

∣∣∣ex(k−1)α+l

)
− π

∥∥∥∞ =
∥∥∥e�x(k−1)α+l

Pα − π�
∥∥∥∞

≤
∥∥∥e�x(k−1)α+l

Pα − π�
∥∥∥
1
≤ t

2
∧ πmax.

Combining the two inequality above and the definition (77),
we have for any 1 ≤ j ≤ p, 1 ≤ l ≤ α,

P

(∣∣∣∣∣
n0∑
k=1

(ekα+l) j−n0π j

∣∣∣∣∣≥ t

)
≤2 exp

( −t2/8

2n0πmax+t/6

)
.

(92)

By a union bound, one can show

P (‖π̃ − π‖∞ ≥ t) = P

(∥∥∥∥∥ 1α
α∑

l=1

1

n0

n0∑
k=1

exkα+l − π

∥∥∥∥∥
∞

≥ t

)

≤P
(
max
1≤l≤α

max
1≤ j≤p

∣∣∣∣∣
n0∑
k=1

1

n0
(exkα+l ) j − π j

∣∣∣∣∣ ≥ t

)

≤2αp exp
( −(tn0)2/8

2n0πmax + tn0/6

)
, (93)

which has developed the upper bound for ‖π̃ − π‖∞ (70).
Finally, the proofs of (7), (74), and (7) are essentially follows
from the previous argument for ‖F̃ − F‖. �
Lemma 8 (Rowwise Markov Concentration Inequality). Sup-
pose V ∈ Op,r is a fixed orthogonal matrices satisfying
maxi ‖V�ei‖2 ≤ δ

√
r/p. Assume n ≥ Cpτ∗ log2(n) and

τ∗ := τ (1/4). Under the same setting as Lemma 7, for any
c0 > 0 there exists C > 0,

max
1≤i≤p

‖(F̃V)i· − (FV)i·‖2 ≤ C

√
πmaxδ2 rτ∗ log2(n)

np

with probability at least 1− Cn−c0 .
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Proof of Lemma 8. We first focus on the s-th row of
‖F̃Vi· − FVi·‖2. Similarly as the proof of Lemma 7, let
α = τ (min{t/2, πmax}) + 1, Ek = exk e

�
xk+1

, k = 1, . . . , n. t is
to be determined later. We similarly assume n is a multiple of
α and define n0 = n/α. We further define

Tk ∈ R
1×r , Tk = e�s EkV, k = 1, . . . , n;

and the “thin” matrix sequences for l = 1, . . . , α,
k = 1, . . . , n0,

T̃(l)
k =Tkα+l − E

(
Tkα+l |T(k−1)α+l

)
=e�s Ekα+lV − E

(
e�s Ekα+lV

∣∣∣x(k−1)α+l

)
.

Then Tkα+l and T̃(l)
k satisfy the following 2-norm upper bound

‖Tkα+l‖ = max
1≤i, j≤p

‖e�s ei e�j V‖ = max
j

‖e�j V‖2 ≤ δ
√
r/p.

By Jensen’s inequality, ‖E(Tkα+l |T(k−1)α+l)‖ ≤ δ
√
r/p, thus

‖T̃(l)
k ‖ ≤ 2δ

√
r/p almost surely.

Next, we define π̃(k,l) =
(
e�x(k−1)α+l

Pα−1
)� ∈ Rp . By the

choice of α and the mixing time property,

‖π̃(k,l) − π‖1 =
∥∥∥e�x(k−1)α+l

Pα−1 − π
∥∥∥
1
≤ min{t/2, πmax}.

Then,

E

(
Tkα+lT�

kα+l

∣∣∣x(k−1)α+l

)
=

p∑
i, j=1

e�s ei e�j VV�e j e�i es(π̃(k,l))iPi j

=
p∑

i, j=1

e�s ei e�i es(π̃(k,l))iPi j ‖V�e j‖22

≤
p∑

i, j=1

e�s ei e�i es(π̃(k,l))iPi j · δr/p

=
p∑

i=1

e�s ei e�i es(π̃(k,l))iδ
2 r/p

≤δ2(r/p)max
i

(π̃(k,l))i · e�s
p∑

i=1

eie
�
i es

≤δ2(r/p)max
i

(π̃(k,l))i ≤ δ2(r/p)
(
πmax + ‖π − π̃(k,l)‖1

)
≤2πmaxδ

2(r/p),

By Jensen’s inequality,∥∥∥E (
T�
kα+lTkα+l

∣∣∣x(k−1)α+l

)∥∥∥
≤E

(∥∥∥T�
kα+lTkα+l

∥∥∥ ∣∣∣x(k−1)α+l

)
≤E

(
Tkα+lT�

kα+l

∣∣∣x(k−1)α+l

)
≤ 2πmaxδ

2(r/p).

Similarly as (85) and (86) in the proof of Lemma 7, we can
show

0 ≤ E

(
T̃(l)
k (T̃(l)

k )�
∣∣∣T̃(l)

k

)
≤ 2πmaxδ

2r/p,

0 � E

(
(T̃(l)

k )�T̃(l)
k

∣∣∣T̃(l)
k

)
� 2πmaxδ

2(r/p)Ir .

Then the predictable quadratic variation process satisfies

max
{ ∥∥∥∥∥

n0∑
k=1

E

(
T̃(l)
k (T̃(l)

k )�
∣∣∣T̃(l)

k

)∥∥∥∥∥ ,

∥∥∥∥∥
n0∑
k=1

E(T̃(l)
k )�

(
T̃(l)
k

∣∣∣T̃(l)
k

)∥∥∥∥∥
}
≤ 2n0πmaxδ

2r/p.

By the Freedman’s inequality (Corollary 1.3 in [73]),

P

(∥∥∥∥∥
n0∑
k=1

T̃(l)
k

∥∥∥∥∥ ≥ t/2

)

≤(r + 1) exp

(
− (tn0)2/8

2n0πmaxδ2r/p + tn0δ
√
r/p/3

)
.

Next, similarly as (89), (90), and (91) in the proof of Lemma 7,
we can show∥∥∥E (

Tkα+l

∣∣∣x(k−1)α+l

)
− diag(π)P

∥∥∥ ≤ t/2,

P

(∥∥∥∥∥ 1

n0

n0∑
k=1

Tkα+l − e�s FV

∥∥∥∥∥ ≥ t

)

≤(r + 1) exp

(
− (tn0)2/8

2n0πmaxδ2r/p + tn0δ
√
r/p/3

)
,

and

P

(∥∥∥e�s F̃V − e�s FV
∥∥∥ ≥ t

)
≤α(r + 1) exp

(
− (tn0)2/8

2n0πmaxδ2r/p + tn0δ
√
r/p/3

)

≤α(r + 1) exp

(
− t2n/(8α)

2πmaxδ2r/p + tδ
√
r/p/3

)
.

By Lemma 5, α = τ (min(t/2, πmax)) + 1 ≤ Cτ∗ log(1/(t ∧
πmax)). Next, for any c0 > 0, we set

t = C

√
πmaxδ2rτ∗ log2(n)

np
+ C

δ
√
r/p · τ∗ log2(n)

n

for large constant C > 0. By n ≥ Cpτ∗ log2(n) ≥ Cr and
πmax ≥ 1/p, we have

P

(∥∥∥e�s F̃V − e�s FV
∥∥∥ ≥ C

√
πmaxδ2rτ∗ log2(n)

np

+ C
δ
√
r/p · τ∗ log2(n)

n

)
≤ n−c0−1

and

max
i

‖(F̃V)i· − (FV)i·‖2 = max
1≤s≤p

∥∥∥e�s F̃V − e�s FV
∥∥∥

≤C
√

πmaxδ2rτ∗ log2(n)

np
+ C

δ
√
r/p · τ∗ log2(n)

n

≤C
√

πmaxδ2rτ∗ log2(n)

np

with probability at least 1− n−c0−1 p ≥ 1− n−c0 . �
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